Your browser doesn't support javascript.
loading
A quantitative description of light-limited cyanobacterial growth using flux balance analysis.
Höper, Rune; Komkova, Daria; Zavrel, Tomás; Steuer, Ralf.
Affiliation
  • Höper R; Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany.
  • Komkova D; Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany.
  • Zavrel T; Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia.
  • Steuer R; Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany.
PLoS Comput Biol ; 20(8): e1012280, 2024 Aug.
Article in En | MEDLINE | ID: mdl-39102434
ABSTRACT
The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its quantitative evaluation using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of experimental analyses, we develop a novel approach to describe light absorption and light utilization within the framework of FBA. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable of predicting quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototrophic microorganisms.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photosynthesis / Synechocystis / Light / Models, Biological Language: En Journal: PLoS Comput Biol / PloS comput. biol / PloS computational biology Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2024 Document type: Article Affiliation country: Alemania Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photosynthesis / Synechocystis / Light / Models, Biological Language: En Journal: PLoS Comput Biol / PloS comput. biol / PloS computational biology Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2024 Document type: Article Affiliation country: Alemania Country of publication: Estados Unidos