Your browser doesn't support javascript.
loading
Characterization and engineering of the type 3 secretion system needle monomer from Salmonella through the construction and screening of a comprehensive mutagenesis library.
Burdette, Lisa Ann; Leach, Samuel Alexander; Kennedy, Nolan; Ikwuagwu, Bon C; Summers, Jordan S; Tullman-Ercek, Danielle.
Affiliation
  • Burdette LA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA.
  • Leach SA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
  • Kennedy N; Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
  • Ikwuagwu BC; Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
  • Summers JS; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA.
  • Tullman-Ercek D; Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
mSphere ; : e0036724, 2024 Aug 07.
Article in En | MEDLINE | ID: mdl-39109886
ABSTRACT
Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers. Here, we investigated this link with the PrgI protein, the monomer of the secretory channel of the type 3 secretion system (T3SS) of Salmonella enterica. Despite detailed knowledge of the PrgI needle's assembly and structure, little is known about how its structure influences its secretory capabilities. To study this, we recently constructed a comprehensive codon mutagenesis library of the PrgI protein utilizing a novel one-pot recombineering approach. We then screened this library for functional T3SS assembly and secretion titer by measuring the secretion of alkaline phosphatase using a high-throughput activity assay. This allowed us to construct a first-of-its-kind secretion fitness landscape to characterize the PrgI needle's mutability at each position as well as the mutations which lead to enhanced T3SS secretion. We discovered new design rules for building a functional T3SS as well as identified hypersecreting mutants. This work can be used to increase understanding of the T3SS's assembly and identify further targets for engineering. This work also provides a blueprint for future efforts to engineer other complex protein assemblies through the construction of fitness landscapes.IMPORTANCEProtein secretion offers a simplified alternative method for protein purification from bacterial hosts. However, the current state-of-the-art methods for protein secretion in bacteria are still hindered by low yields relative to traditional protein purification strategies. Engineers are now seeking strategies to enhance protein secretion titers from bacterial hosts, often through genetic manipulations. In this study, we demonstrate that protein engineering strategies focused on altering the secretion apparatus can be a fruitful avenue toward this goal. Specifically, this study focuses on how changes to the PrgI needle protein from the type 3 secretion system from Salmonella enterica can impact secretion titer. We demonstrate that this complex is amenable to comprehensive mutagenesis studies and that this can yield both PrgI variants with increased secretory capabilities and insight into the normal functioning of the type 3 secretion system.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: MSphere Year: 2024 Document type: Article Affiliation country: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: MSphere Year: 2024 Document type: Article Affiliation country: Estados Unidos