Your browser doesn't support javascript.
loading
Droplet-based microfluidics for engineering shape-controlled hydrogels with stiffness gradient.
Soliman, Bram G; Chin, Ian L; Li, Yiwei; Ishii, Melissa; Ho, Minh Hieu; Doan, Vinh Khanh; Cox, Thomas R; Wang, Peng Yuan; Lindberg, Gabriella C J; Zhang, Yu Shrike; Woodfield, Tim B F; Choi, Yu Suk; Lim, Khoon S.
Affiliation
  • Soliman BG; Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand.
  • Chin IL; Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand.
  • Li Y; School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia.
  • Ishii M; School of Human Sciences, The University of Western Australia, Perth 6009, Australia.
  • Ho MH; School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.
  • Doan VK; Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand.
  • Cox TR; School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.
  • Wang PY; School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.
  • Lindberg GCJ; The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
  • Zhang YS; Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 32500, People's Republic of China.
  • Woodfield TBF; Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand.
  • Choi YS; Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, United States of America.
  • Lim KS; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America.
Biofabrication ; 16(4)2024 Aug 21.
Article in En | MEDLINE | ID: mdl-39121873
ABSTRACT
Current biofabrication strategies are limited in their ability to replicate native shape-to-function relationships, that are dependent on adequate biomimicry of macroscale shape as well as size and microscale spatial heterogeneity, within cell-laden hydrogels. In this study, a novel diffusion-based microfluidics platform is presented that meets these needs in a two-step process. In the first step, a hydrogel-precursor solution is dispersed into a continuous oil phase within the microfluidics tubing. By adjusting the dispersed and oil phase flow rates, the physical architecture of hydrogel-precursor phases can be adjusted to generate spherical and plug-like structures, as well as continuous meter-long hydrogel-precursor phases (up to 1.75 m). The second step involves the controlled introduction a small molecule-containing aqueous phase through a T-shaped tube connector to enable controlled small molecule diffusion across the interface of the aqueous phase and hydrogel-precursor. Application of this system is demonstrated by diffusing co-initiator sodium persulfate (SPS) into hydrogel-precursor solutions, where the controlled SPS diffusion into the hydrogel-precursor and subsequent photo-polymerization allows for the formation of unique radial stiffness patterns across the shape- and size-controlled hydrogels, as well as allowing the formation of hollow hydrogels with controllable internal architectures. Mesenchymal stromal cells are successfully encapsulated within hollow hydrogels and hydrogels containing radial stiffness gradient and found to respond to the heterogeneity in stiffness through the yes-associated protein mechano-regulator. Finally, breast cancer cells are found to phenotypically switch in response to stiffness gradients, causing a shift in their ability to aggregate, which may have implications for metastasis. The diffusion-based microfluidics thus finds application mimicking native shape-to-function relationship in the context of tissue engineering and provides a platform to further study the roles of micro- and macroscale architectural features that exist within native tissues.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrogels / Tissue Engineering / Microfluidics Limits: Humans Language: En Journal: Biofabrication Journal subject: BIOTECNOLOGIA Year: 2024 Document type: Article Affiliation country: Nueva Zelanda Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrogels / Tissue Engineering / Microfluidics Limits: Humans Language: En Journal: Biofabrication Journal subject: BIOTECNOLOGIA Year: 2024 Document type: Article Affiliation country: Nueva Zelanda Country of publication: Reino Unido