Your browser doesn't support javascript.
loading
Danggui Shaoyao San and disassembled prescription: neuroprotective effects via AMPK/mTOR-mediated autophagy in mice.
Cheng, Xiaoqing; Dai, Yuqiong; Shang, Baoling; Zhang, Shuting; Lin, Liting; Wu, Qingguang; Zhan, Ruoting; Li, Shengqing; Liu, Sijun.
Affiliation
  • Cheng X; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
  • Dai Y; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
  • Shang B; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Zhang S; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
  • Lin L; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
  • Wu Q; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
  • Zhan R; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
  • Li S; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Liu S; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, China.
BMC Complement Med Ther ; 24(1): 298, 2024 Aug 10.
Article in En | MEDLINE | ID: mdl-39127649
ABSTRACT

BACKGROUND:

Danggui Shaoyao San (DSS), a frequently prescribed Chinese medicine formula, has demonstrated clinical efficacy in the treatment of Alzheimer's disease (AD). This study aims to explore the differences in therapeutic effects of DSS and its disassembled prescriptions, Suangan (SG) and Xingan (XG), in treating Alzheimer's Disease and the mechanism of DSS recovering autophagy in AD.

METHODS:

A network pharmacology strategy was employed to delineate the bioactive constituents, associated targets, and regulatory mechanisms of DSS in AD, encompassing in silico target forecasting, the generation and scrutiny of PPI networks, alongside GO and KEGG-based pathway elucidation. An AD mouse model, induced by intracerebroventricular injection of Aß1-42, was used to evaluate the therapeutic effects of DSS and its disassembled prescriptions on AD. Cognitive function was evaluated using the Morris water maze. Expression levels of inflammatory cytokines were quantified via RT-qPCR and ELISA. Western blotting was used to detect the expression of proteins related to AD pathological markers and the AMPK/mTOR signaling pathway.

RESULTS:

50 active compounds and 718 HUB genes were screened from relevant databases and literature. KEGG and GO analyses indicated that DSS's potential mechanisms against AD involved the AMPK/mTOR signaling pathway and mitophagy. In vivo animal model, the results demonstrated that DSS, SG, and XG treatments improved cognitive function and ameliorated neuroinflammation in mice. Additionally, they alleviated the pathological changes of neuronal cells. These treatments also increased the protein level of PSD-95, and decreased levels of APP and p-Tau. Among them, DSS exhibited the best efficacy. Furthermore, DSS, SG, and XG upregulated the expression of LC3, Beclin1, and p-AMPK, while decreasing the expression of P62 and p-mTOR.

CONCLUSIONS:

DSS, SG, and XG were found to ameliorate AD-related pathological symptoms in Aß1-42-injected mice, likely through the AMPK/mTOR autophagy signaling pathway.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Autophagy / Drugs, Chinese Herbal / Neuroprotective Agents / TOR Serine-Threonine Kinases / Alzheimer Disease Limits: Animals Language: En Journal: BMC Complement Med Ther Year: 2024 Document type: Article Affiliation country: China Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Autophagy / Drugs, Chinese Herbal / Neuroprotective Agents / TOR Serine-Threonine Kinases / Alzheimer Disease Limits: Animals Language: En Journal: BMC Complement Med Ther Year: 2024 Document type: Article Affiliation country: China Country of publication: Reino Unido