Your browser doesn't support javascript.
loading
Ferroelectricity in Ultrathin Halide Perovskites.
Kashikar, Ravi; Valdespino, Arlies; Ogg, Charlton; Uppgard, Edvin; Lisenkov, S; Ponomareva, I.
Affiliation
  • Kashikar R; Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
  • Valdespino A; Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
  • Ogg C; Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
  • Uppgard E; Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
  • Lisenkov S; Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
  • Ponomareva I; Department of Physics, University of South Florida, Tampa, Florida 33620, United States.
Nano Lett ; 24(34): 10624-10630, 2024 Aug 28.
Article in En | MEDLINE | ID: mdl-39140493
ABSTRACT
Ferroelectricity has recently been demonstrated in germanium-based halide perovskites. We use first-principles-based simulations to study 4-18 nm CsGeBr3 films and develop a theory for ferroelectric ultrathin films. The theory introduces (i) a local order parameter, which identifies phase transitions into both monodomain and polydomain phases, and (ii) a dipole pattern classifier, which allows efficient and reliable identification of dipole patterns. Application of the theory to both halides CsGeBr3 and CsGeI3 and oxide BiFeO3 ultrathin ferroelectrics reveals two distinct scenarios. First, the films transition into a monodomain phase below the critical value of the residual depolarizing field. Above this critical value, the second scenario occurs, and the film undergoes a transition into a nanodomain phase. The two scenarios exhibit opposite responses of Curie temperature to thickness reduction. Application of a dipole pattern classifier reveals rich nanodomain phases in halide films nanostripes, labyrinths, zig-zags, pillars, and lego domains.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2024 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nano Lett Year: 2024 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos