Your browser doesn't support javascript.
loading
Characterizing offshore polar ocean soundscapes using ecoacoustic intensity and diversity metrics.
Mattmüller, Ramona M; Thomisch, Karolin; Hoffman, Joseph I; Van Opzeeland, Ilse.
Affiliation
  • Mattmüller RM; Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.
  • Thomisch K; Department of Animal Behaviour, Bielefeld University, Bielefeld 33615, Germany.
  • Hoffman JI; Ocean Acoustics Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven 27570, Germany.
  • Van Opzeeland I; Ocean Acoustics Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven 27570, Germany.
R Soc Open Sci ; 11(8): 231917, 2024 Aug.
Article in En | MEDLINE | ID: mdl-39144498
ABSTRACT
Polar offshore environments are considered the last pristine soundscapes, but accelerating climate change and increasing human activity threaten their integrity. In order to assess the acoustic state of polar oceans, there is the need to investigate their soundscape characteristics more holistically. We apply a set of 14 ecoacoustic metrics (EAMs) to identify which metrics are best suited to reflect the characteristics of disturbed and naturally intact polar offshore soundscapes. We used two soundscape datasets (i) the Arctic eastern Fram Strait (FS), which is already impacted by anthropogenic noise, and (ii) the quasi-pristine Antarctic Weddell Sea (WS). Our results show that EAMs when applied in concert can be used to quantitatively assess soundscape variability, enabling the appraisal of marine soundscapes over broad spatiotemporal scales. The tested set of EAMs was able to show that the eastern FS, which is virtually free from sea ice, lacks seasonal soundscape dynamics and exhibits low acoustic complexity owing to year-round wind-mediated sounds and anthropogenic noise. By contrast, the WS exhibits pronounced seasonal soundscape dynamics with greater soundscape heterogeneity driven in large part by the vocal activity of marine mammal communities, whose composition in turn varies with the prevailing seasonal sea ice conditions.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: R Soc Open Sci Year: 2024 Document type: Article Affiliation country: Alemania Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: R Soc Open Sci Year: 2024 Document type: Article Affiliation country: Alemania Country of publication: Reino Unido