Your browser doesn't support javascript.
loading
Loss-of-function of the Zinc Finger Homeobox 4 (ZFHX4) gene underlies a neurodevelopmental disorder.
María Del Rocío, Pérez Baca; Palomares Bralo, María; Vanhooydonck, Michiel; Hamerlinck, Lisa; D'haene, Eva; Leimbacher, Sebastian; Jacobs, Eva Z; De Cock, Laurenz; D'haenens, Erika; Dheedene, Annelies; Malfait, Zoë; Vantomme, Lies; Silva, Ananilia; Rooney, Kathleen; Santos-Simarro, Fernando; Lleuger-Pujol, Roser; García-Miñaúr, Sixto; Losantos-García, Itsaso; Menten, Björn; Gestri, Gaia; Ragge, Nicola; Sadikovic, Bekim; Bogaert, Elke; Syx, Delfien; Callewaert, Bert; Vergult, Sarah.
Affiliation
  • María Del Rocío PB; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Palomares Bralo M; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Vanhooydonck M; CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain.
  • Hamerlinck L; ITHACA- European Reference Network, Spain.
  • D'haene E; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Leimbacher S; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Jacobs EZ; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • De Cock L; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • D'haenens E; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Dheedene A; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Malfait Z; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Vantomme L; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Silva A; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Rooney K; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Santos-Simarro F; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Lleuger-Pujol R; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • García-Miñaúr S; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
  • Losantos-García I; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Menten B; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Gestri G; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Ragge N; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Sadikovic B; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Bogaert E; Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
  • Syx D; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
  • Callewaert B; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
  • Vergult S; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada.
medRxiv ; 2024 Aug 08.
Article in En | MEDLINE | ID: mdl-39148819
ABSTRACT
8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting ZFHX4 with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function variants largely overlap, identifying ZFHX4 as the main driver for the microdeletion syndrome, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions only. We identify ZFHX4 as a transcription factor that is increasingly expressed during human brain development and neuronal differentiation. Furthermore, ZFHX4 interacting factors identified via IP-MS in neural progenitor cells, suggest an important role for ZFHX4 in cellular and developmental pathways, especially during histone modifications, cytosolic transport and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds with the promoter regions of genes with crucial roles in embryonic, neuron and axon development. Since loss-of-function variants in ZFHX4 are found with consistent dysmorphic facial features, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, (mosaic) mutant for zfhx4 loss-of-function variants, have significantly shorter Meckel's cartilages and smaller ethmoid plates compared to control zebrafish. Furthermore, behavioral assays show a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with control zebrafish larvae. Although further research is needed, our in vivo work suggests a role for zfhx4 in facial skeleton patterning, palatal development and behavior.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: MedRxiv Year: 2024 Document type: Article Affiliation country: Bélgica

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: MedRxiv Year: 2024 Document type: Article Affiliation country: Bélgica