Your browser doesn't support javascript.
loading
Clinical validation of enhanced CT imaging for distal radius fractures through conditional Generative Adversarial Networks (cGAN).
Kim, Hyojune; Ryu, Seung Min; Keum, Ji-Soo; Oh, Sang-Il; Kim, Kyung-Nam; Shin, Young Ho; Jeon, In-Ho; Koh, Kyoung Hwan.
Affiliation
  • Kim H; Department of Orthopedic Surgery, Hospital of Chung-Ang University of Medicine, Dongjak-gu, Seoul, Republic of Korea.
  • Ryu SM; Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
  • Keum JS; Waycen Inc., Seoul, Republic of Korea.
  • Oh SI; Waycen Inc., Seoul, Republic of Korea.
  • Kim KN; Waycen Inc., Seoul, Republic of Korea.
  • Shin YH; Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
  • Jeon IH; Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
  • Koh KH; Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
PLoS One ; 19(8): e0308346, 2024.
Article in En | MEDLINE | ID: mdl-39150966
ABSTRACT
BACKGROUND/

PURPOSE:

Distal radius fractures (DRFs) account for approximately 18% of fractures in patients 65 years and older. While plain radiographs are standard, the value of high-resolution computed tomography (CT) for detailed imaging crucial for diagnosis, prognosis, and intervention planning, and increasingly recognized. High-definition 3D reconstructions from CT scans are vital for applications like 3D printing in orthopedics and for the utility of mobile C-arm CT in orthopedic diagnostics. However, concerns over radiation exposure and suboptimal image resolution from some devices necessitate the exploration of advanced computational techniques for refining CT imaging without compromising safety. Therefore, this study aims to utilize conditional Generative Adversarial Networks (cGAN) to improve the resolution of 3 mm CT images (CT enhancement).

METHODS:

Following institutional review board approval, 3 mm-1 mm paired CT data from 11 patients with DRFs were collected. cGAN was used to improve the resolution of 3 mm CT images to match that of 1 mm images (CT enhancement). Two distinct methods were employed for training and generating CT images. In Method 1, a 3 mm CT raw image was used as input with the aim of generating a 1 mm CT raw image. Method 2 was designed to emphasize the difference value between the 3 mm and 1 mm images; using a 3 mm CT raw image as input, it produced the difference in image values between the 3 mm and 1 mm CT scans. Both quantitative metrics, such as peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structural similarity index (SSIM), and qualitative assessments by two orthopedic surgeons were used to evaluate image quality by assessing the grade (1~4, which low number means high quality of resolution).

RESULTS:

Quantitative evaluations showed that our proposed techniques, particularly emphasizing the difference value in Method 2, consistently outperformed traditional approaches in achieving higher image resolution. In qualitative evaluation by two clinicians, images from method 2 showed better quality of images (grade method 1, 2.7; method 2, 2.2). And more choice was found in method 2 for similar image with 1 mm slice image (15 vs 7, p = 201).

CONCLUSION:

In our study utilizing cGAN for enhancing CT imaging resolution, the authors found that the method, which focuses on the difference value between 3 mm and 1 mm images (Method 2), consistently outperformed.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Radius Fractures / Tomography, X-Ray Computed / Wrist Fractures Limits: Humans Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Radius Fractures / Tomography, X-Ray Computed / Wrist Fractures Limits: Humans Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Country of publication: Estados Unidos