Your browser doesn't support javascript.
loading
Black carbon and particulate matter concentrations amid central Chile's extreme wildfires.
Guerrero, Fabián; Espinoza, Lorena; Vidal, Víctor; Carmona, Camilo; Krecl, Patricia; Targino, Admir Créso; Ruggeri, María F; Toledo, Mario.
Affiliation
  • Guerrero F; Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile. Electronic address: fabian.guerreroc@usm.cl.
  • Espinoza L; Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile.
  • Vidal V; Estudios Ambientales y Asesorías Limitada (E2A), Reñaca Norte 25, of. 608, 2542629 Viña del Mar, Valparaíso, Chile.
  • Carmona C; Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile.
  • Krecl P; Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, 86036-370 Londrina, PR, Brazil.
  • Targino AC; Graduate Program in Environmental Engineering, Federal University of Technology, Av. Pioneiros 3131, 86036-370 Londrina, PR, Brazil.
  • Ruggeri MF; Centre for Environmental Technologies, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile.
  • Toledo M; Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, 23400000 Valparaíso, Chile.
Sci Total Environ ; 951: 175541, 2024 Nov 15.
Article in En | MEDLINE | ID: mdl-39151628
ABSTRACT
The increase in the frequency and severity of global wildfires has been largely influenced by climate change and land use changes. From February 2 to 6, 2024, central Chile experienced its most devastating wildland-urban interface wildfire in history, severely impacting the Valparaíso region. This catastrophic event, which led to extensive forest destruction, the loss of thousands of homes, and over a hundred human fatalities, directly impacted the area surrounding the campus of Federico Santa María Technical University. In that period, an air quality monitoring campaign was set up on the campus to measure black carbon (BC) and particulate matter (PM) during the wildfire season. The monitoring station was located directly within the smoke plume, allowing for the collection of unprecedented air quality data. Extremely high concentrations of BC at 880 nm were reported during the wildfires, with a daily mean (±σ) of 14.83 ± 19.52 µg m-3. Peak concentrations measured at 880 nm and 375 nm reached 812.89 µg m-3 and 1561.24 µg m-3, respectively. The maximum daily mean BC concentrations at these wavelengths were 55 and 99 times higher, respectively, compared to the pre-event period. The mean Ångström absorbing coefficient during the event was 1.66, indicating biomass burning as the primary BC source, while the maximum BC/PM2.5 ratio (at 375 nm) reached 57 %. From February 2 to 5, 2024, PM concentrations exceeded the Chilean air quality standard by 82 % and 198 % for coarse and fine particles, respectively. These levels are 4.7 and 6.0 times higher than the World Health Organization's recommendations. These elevated concentrations persisted for up to three days after the fire was extinguished. This study provides unique evidence of the rapid deterioration of regional air quality during a wildfire event using in situ measurements, serving as a stark reminder of the far-reaching consequences of a warming climate.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Environmental Monitoring / Wildfires / Air Pollutants / Air Pollution / Particulate Matter / Soot Country/Region as subject: America do sul / Chile Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Environmental Monitoring / Wildfires / Air Pollutants / Air Pollution / Particulate Matter / Soot Country/Region as subject: America do sul / Chile Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Países Bajos