Your browser doesn't support javascript.
loading
Analysis of the complete mitochondrial genome of Panax quinquefolius reveals shifts from cis-splicing to trans-splicing of intron cox2i373.
Li, Jingling; Ni, Yang; Yang, Heyu; Lu, Qianqi; Chen, Haimei; Liu, Chang.
Affiliation
  • Li J; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Unio
  • Ni Y; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Unio
  • Yang H; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Unio
  • Lu Q; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Unio
  • Chen H; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Unio
  • Liu C; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Unio
Gene ; 930: 148869, 2024 Dec 20.
Article in En | MEDLINE | ID: mdl-39153707
ABSTRACT
Panax quinquefolius is a perennial plant with medicinal values. In this study, we assembled the complete mitochondrial genome (mitogenome) of P. quinquefolius using PMAT assembler. The total length of P. quinquefolius mitogenome is 573,154 bp. We annotated a total of 34 protein-coding genes (PCGs), 35 tRNA genes, and 6 rRNA genes in this mitogenome. The analysis of repetitive elements shows that there are 153 SSRs, 24 tandem repeats and 242 pairs of dispersed repeats this mitogenome. Also, we found 24 homologous sequences with a total length of 64,070 bp among its mitogenome and plastome, accounting for 41.05 % of the plastome, and 11.18 % of the mitogenome, showing a remarkable frequent sequence dialogue between plastome and mitogenomes. Besides, a total of 583 C to U RNA editing sites on 34 PCGs of high confidence were predicted by using Deepred-mt. We also inferred the phylogenetic relationships of P. quinquefolius and other angiosperms based on mitochondrial PCGs. Finally, we observed a shift from cis- to trans-splicing in P. quinquefolius for two mitochondrial introns, namely cox2i373 and nad1i728, and a pair of 48 bp short repetitive sequences may be associated with the breaking and rearrangement of the cox2i373 intron. The fragmentation of the cox2i373 intron was further confirmed by our PCR amplification experiments. In summary, our report on the P. quinquefolius mitogenome provides a new perspective on the intron evolution of the mitogenome.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phylogeny / Introns / Trans-Splicing / Genome, Mitochondrial / Panax Language: En Journal: Gene Year: 2024 Document type: Article Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phylogeny / Introns / Trans-Splicing / Genome, Mitochondrial / Panax Language: En Journal: Gene Year: 2024 Document type: Article Country of publication: Países Bajos