Your browser doesn't support javascript.
loading
Hazardous effects of plastic microfibres from facial masks to aquatic animal health: Insights from zebrafish model.
Qualhato, Gabriel; Cirqueira Dias, Felipe; Rocha, Thiago Lopes.
Affiliation
  • Qualhato G; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil.
  • Cirqueira Dias F; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
  • Rocha TL; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil. Electronic address: thiagorochabio20@ufg.br.
Sci Total Environ ; 951: 175555, 2024 Aug 19.
Article in En | MEDLINE | ID: mdl-39168327
ABSTRACT
Facial masks are a source of plastic microfibres (PMFs) in the aquatic environment, an emerging risk factor for aquatic organisms. However, little is known concerning its impact during the early developmental stages of fish. Thus, the current study aimed to evaluate the potential interaction and developmental toxicity of PMFs derived from leachate of surgical masks (SC-Msk) and N-95 facial masks (N95-Msk) using a multi-biomarker approach in developing zebrafish (Danio rerio). PMFs from both facial masks were obtained and characterized by multiple techniques. Zebrafish embryos were exposed to environmentally relevant concentrations of PMFs from both facial masks (1000, 10,000, and 100,000 particle L-1), and the toxicity was analysed in terms of mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological changes, reactive oxygen species (ROS) levels, cell viability, and behavioural impairments. The results showed that both facial masks can release PMFs, but the N95-Msk produced a higher concentration of PMFs than SC-Msk. Both PMFs can interact with zebrafish chorion and don't cause effects on embryo mortality and hatching; however, zebrafish embryos showed cardiotoxic effects, and larvae showed increased agitation, average speed, and distance travelled, indicating the behavioural impairments induced by PMFs derived from facial masks. Overall, results showed the risk of PMFs to the health of freshwater fish, indicating the need for greater attention to the disposal and ecotoxicological effects of facial masks on aquatic organisms.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: Brasil Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: Brasil Country of publication: Países Bajos