Your browser doesn't support javascript.
loading
Detection and health implications of phthalates in tea beverages in market: Application of novel solid-phase microextraction fibers.
Wang, Shaohan; Wang, Shaozhuang; Chen, Tianning; Yu, Jiaxing; Shi, Yueru; Chen, Guosheng; Xu, Jianqiao; Qiu, Junlang; Zhu, Fang; Ouyang, Gangfeng.
Affiliation
  • Wang S; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Wang S; College of Economics and Management, South China Agricultural University, Guangzhou 510642, Guangdong, China.
  • Chen T; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Yu J; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Shi Y; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Chen G; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Xu J; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Qiu J; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Zhu F; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China. Electronic address: ceszhuf@mail.sysu.edu.cn.
  • Ouyang G; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
Sci Total Environ ; 953: 176031, 2024 Sep 03.
Article in En | MEDLINE | ID: mdl-39236820
ABSTRACT
Assessment and control of emerging organic pollutants in food have become critical for global food safety and health. The European Union has set standards for certain emerging organic pollutants, such as phthalic acid esters (PAEs) in food. Because of being endocrine disruptors, PAEs are toxic and carcinogenic to humans. Release of PAEs from packaging materials poses a potential risk to human health and causes environmental pollution. In this study, a highly sensitive analytical method for the detection of PAE contents in tea beverages was established using hydroxyl-functionalized covalent organic frameworks (COFs) as solid-phase microextraction (SPME) coating. Results indicate that functionalization with hydroxyl groups enhances the adsorption of PAEs. The proposed method exhibits a wide linear range (1-20,000 ng L-1), low limits of detection (> 0.048 ng L-1), and satisfactory recovery (72.8 %-127.3 %). To investigate the PAE contamination in beverages, contamination levels of six typical PAEs and their health impacts were surveyed across various brands/types/packaging materials of tea beverages sold in China. Results of the hazard quotient and hazard index approaches suggest no or extremely low health concerns regarding PAE levels. We observe that hydroxyl groups functionalized on COFs enhance the adsorption of PAEs. Moreover, an important outcome of this study is development of an efficient and sensitive direct detection method for PAEs in complex tea matrices, providing a reliable approach for the assessment of PAEs in other complex matrices.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: China Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: China Country of publication: Países Bajos