Ferroelectric Interfaces for Dendrite Prevention in Zinc-Ion Batteries.
Small
; : e2403555, 2024 Sep 15.
Article
in En
| MEDLINE
| ID: mdl-39279328
ABSTRACT
Aqueous rechargeable zinc-ion batteries (ZIBs) are increasingly recognized as promising energy storage systems for mini-grid and mini-off-grid applications due to their advantageous characteristics such as high safety, affordability, and considerable theoretical capacity. However, the long-term cycling performance of ZIBs is hampered by challenges including the uncontrolled dendrite formation, the passivation, and the occurrence of the hydrogen evolution reaction (HER) on the Zn anode. In this study, enhancing ZIB performance by implementing oxide material coatings on Zn metal, serving as a physical barrier at the electrode-electrolyte interfaces to mitigate dendrite growth and suppress the HER is concentrated. Specifically, the mechanisms through which the n-type semiconductor TiO2 coated Zn anode establishes ohmic contact with Zn, and the high-dielectric BaTiO3 (BTO) coated Zn anode fosters Maxwell-Wagner polarization with ferroelectric properties, significantly inhibiting dendrite growth and side reactions, thereby resulting in a highly stable Zn anode for efficient aqueous ZIBs is explored. This advanced BTO/Zn electrode demonstrates an extended lifespan of over 700 h compared to bare Zn and TiO2/Zn anodes. Additionally, full-cell aqueous ZIBs incorporating BTO/Zn//VO2 (B) batteries exhibit superior rate capabilities, high capacity, and sustained cycle life.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Small
Journal subject:
ENGENHARIA BIOMEDICA
Year:
2024
Document type:
Article
Country of publication:
Alemania