Scar matrix drives Piezo1 mediated stromal inflammation leading to placenta accreta spectrum.
Nat Commun
; 15(1): 8379, 2024 Sep 27.
Article
in En
| MEDLINE
| ID: mdl-39333481
ABSTRACT
Scar tissue formation is a hallmark of wound repair in adults and can chronically affect tissue architecture and function. To understand the general phenomena, we sought to explore scar-driven imbalance in tissue homeostasis caused by a common, and standardized surgical procedure, the uterine scar due to cesarean surgery. Deep uterine scar is associated with a rapidly increasing condition in pregnant women, placenta accreta spectrum (PAS), characterized by aggressive trophoblast invasion into the uterus, frequently necessitating hysterectomy at parturition. We created a model of uterine scar, recapitulating PAS-like invasive phenotype, showing that scar matrix activates mechanosensitive ion channel, Piezo1, through glycolysis-fueled cellular contraction. Piezo1 activation increases intracellular calcium activity and Protein kinase C activation, leading to NF-κB nuclear translocation, and MafG stabilization. This inflammatory transformation of decidua leads to production of IL-8 and G-CSF, chemotactically recruiting invading trophoblasts towards scar, initiating PAS. Our study demonstrates aberrant mechanics of scar disturbs stroma-epithelia homeostasis in placentation, with implications in cancer dissemination.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Placenta Accreta
/
Trophoblasts
/
Cicatrix
/
Inflammation
/
Ion Channels
Limits:
Animals
/
Female
/
Humans
/
Pregnancy
Language:
En
Journal:
Nat Commun
Journal subject:
BIOLOGIA
/
CIENCIA
Year:
2024
Document type:
Article
Affiliation country:
Estados Unidos
Country of publication:
Reino Unido