Your browser doesn't support javascript.
loading
Glass-forming tendency and stability of aqueous solutions of diethylformamide and dimethylformamide
Baudot A; Boutron P.
Affiliation
  • Baudot A; Centre de Recherches sur les Tres Basses Temperatures, CNRS, Grenoble Cedex 9, 38042, France.
Cryobiology ; 37(3): 187-99, 1998 Nov.
Article in En | MEDLINE | ID: mdl-9787064
ABSTRACT
The glass-forming tendency on cooling and the stability of the wholly amorphous state on warming of aqueous solutions of diethylformamide and of dimethylformamide have been studied by calorimetry. With diethylformamide, only ice formation is observed except on warming at the lowest rate of 2.5 degreesC/min, where occasionally a hydrate forms also. The hydrate was observed up to 10 degreesC/min with 50% diethylformamide. With dimethylformamide hydrates form even at high warming rates. The last hydrate melts at -47.7 degreesC. The warming thermograms are much more complicated than for diethylformamide. For the glass-forming tendency on cooling, as well as for the stability of the wholly amorphous state on warming, these two compounds, at concentrations of 40, 45, or 50% (w/w) in water, are more efficient than glycerol and ethylene glycol, but less than 1,2-propanediol and levo-2,3-butanediol. On warming, they are comparable to DMSO. Pure diethylformamide could not be crystallized, whereas, conversely, pure dimethylformamide could not be vitrified. Curiously, the glass transition of aqueous solutions of diethylformamide increases and then decreases with the diethylformamide concentration in water, contrary to other cryoprotectants, for which it always increases or decreases. Diethyl- and dimethylformamide could be interesting cryoprotectants if they are not too toxic when added before cryopreservation, and in the case of dimethylformamide, if one can avoid damage due to its hydrates. Copyright 1998 Academic Press.
Search on Google
Collection: 01-internacional Database: MEDLINE Language: En Journal: Cryobiology Year: 1998 Document type: Article Affiliation country: Francia
Search on Google
Collection: 01-internacional Database: MEDLINE Language: En Journal: Cryobiology Year: 1998 Document type: Article Affiliation country: Francia