Normas sociales, publicidad y consumo alimentario en escolares: modelado mediante lógica difusa tipo 2 / Social norms, advertising and food consumption in schoolchildren: modeling using fuzzy logic
CienciaUAT
; 18(2): 75-90, ene.-jun. 2024. tab, graf
Article
in Es
|
LILACS-Express
| LILACS
| ID: biblio-1569022
Responsible library:
MX1.1
RESUMEN
Resumen México ocupa el primer lugar en obesidad infantil en el mundo, por lo que resulta importante identificar variables asociadas al consumo alimentario. El objetivo del presente trabajo fue establecer si la forma en que el consumo de alimentos se modifica en función de las normas sociales alimentarias y la publicidad alimentaria que recibe la población infantil escolar. Se diseñó un estudio multivariado predictivo utilizando sistemas de lógica difusa tipo dos de intervalo (IT2 FLS), y comparando su ajuste con modelos convencionales, como la regresión lineal múltiple (RLM). Se trabajó con las respuestas emitidas por 196 niños en un estudio previo y almacenadas en una base de datos, seleccionando solo las que correspondieron a las variables de interés para el estudio. Las normas sociales a evitar, el número de comidas y la compra de alimentos por la publicidad alimentaria permitieron predecir el consumo alimentario de los niños mediante IT2 FLS. En RLM las horas de comidas tuvo mayor capacidad predictiva que el número de comidas. El IT2 FLS proporcionó un mayor coeficiente de determinación (R2 = 0.649), que el de la RLM (R2 = 0.370). El consumo alimentario, al ser un fenómeno multicausal y complejo, puede ser mejor predicho al utilizar métodos de análisis que manejen de forma más flexible la incertidumbre, como lo hace la IT2 FLS.
ABSTRACT
Abstract Mexico ranks first in childhood obesity in the world, so it is important to identify variables associated with food consumption. The objective of this work was to establish whether the way in which food consumption is modified depending on social food norms and food advertising received by school children. A predictive multivariate study was designed using interval type two fuzzy logic systems (IT2 FLS), and comparing its fit with conventional models, such as multiple linear regression (RLM). We worked with the responses issued by 196 children in a previous study and stored in a database, selecting only those that corresponded to the variables of interest for the study. The social norms to avoid, the number of meals and the purchase of food through food advertising made it possible to predict children's food consumption through IT2 FLS. In RLM, mealtimes had a greater predictive capacity than the number of meals. The IT2 FLS provided a higher coefficient of determination (R2 = 0.649) than that of the RLM (R2 = 0.370). Food consumption, being a multicausal and complex phenomenon, can be better predicted by using analysis methods that manage uncertainty more flexibly, as the IT2 FLS does.
Full text:
1
Collection:
01-internacional
Database:
LILACS
Language:
Es
Journal:
CienciaUAT
Journal subject:
Cincias Humanas
/
Pesquisa
Year:
2024
Document type:
Article
Affiliation country:
Mexico
Country of publication:
Mexico