Your browser doesn't support javascript.
loading
NMR conformational study of the sixth transmembrane segment of sarcoplasmic reticulum Ca2+-ATPase.
Soulié, S; Neumann, J M; Berthomieu, C; Møller, J V; le Maire, M; Forge, V.
Affiliation
  • Soulié S; Section de Biophysique des Protéines et des Membranes, Département de Biologie Cellulaire et Moléculaire, CEA et CNRS Unité de Recherche Associée 2096, Gif-sur-Yvette, France.
Biochemistry ; 38(18): 5813-21, 1999 May 04.
Article in En | MEDLINE | ID: mdl-10231532
In current topological models, the sarcoplasmic reticulum Ca2+-ATPase contains 10 putative transmembrane spans (M1-M10), with spans M4/M5/M6 and probably M8 participating in the formation of the membranous calcium-binding sites. We describe here the conformational properties of a synthetic peptide fragment (E785-N810) encompassing the sixth transmembrane span (M6) of Ca2+-ATPase. Peptide M6 includes three residues (N796, T799, and D800) out of the six membranous residues critically involved in the ATPase calcium-binding sites. 2D-NMR experiments were performed on the M6 peptide selectively labeled with 15N and solubilized in dodecylphosphocholine micelles to mimic a membrane-like environment. Under these conditions, M6 adopts a helical structure in its N-terminal part, between residues I788 and T799, while its C-terminal part (G801-N810) remains disordered. Addition of 20% trifluoroethanol stabilizes the alpha-helical N-terminal segment of the peptide, and reveals the propensity of the C-terminal segment (G801-L807) to form also a helix. This second helix is located at the interface or in the aqueous environment outside the micelles, while the N-terminal helix is buried in the hydrophobic core of the micelles. Furthermore, the two helical segments of M6 are linked by a flexible hinge region containing residues T799 and D800. These conformational features may be related to the transient formation of a Schellman motif (L797VTDGL802) encoded in the M6 sequence, which probably acts as a C-cap of the N-terminal helix and induces a bend with respect to the helix axis. We propose a model illustrating two conformations of M6 and its insertion in the membrane. The presence of a flexible region within M6 would greatly facilitate concomitant participation of all three residues (N796, T799, and D800) believed to be involved in calcium complexation.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Sarcoplasmic Reticulum / Calcium-Transporting ATPases / Nuclear Magnetic Resonance, Biomolecular Type of study: Prognostic_studies Language: En Journal: Biochemistry Year: 1999 Document type: Article Affiliation country: France Country of publication: United States
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Sarcoplasmic Reticulum / Calcium-Transporting ATPases / Nuclear Magnetic Resonance, Biomolecular Type of study: Prognostic_studies Language: En Journal: Biochemistry Year: 1999 Document type: Article Affiliation country: France Country of publication: United States