Your browser doesn't support javascript.
loading
Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants.
Bolhuis, A; Tjalsma, H; Stephenson, K; Harwood, C R; Venema, G; Bron, S; van Dijl, J M.
Affiliation
  • Bolhuis A; Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands.
J Biol Chem ; 274(22): 15865-8, 1999 May 28.
Article in En | MEDLINE | ID: mdl-10336490
ABSTRACT
The type I signal peptidase SipS of Bacillus subtilis is of major importance for the processing of secretory precursor proteins. In the present studies, we have investigated possible mechanisms of thermal inactivation of five temperature-sensitive SipS mutants. The results demonstrate that two of these mutants, L74A and Y81A, are structurally stable but strongly impaired in catalytic activity at 48 degrees C, showing the (unprecedented) involvement of the conserved leucine 74 and tyrosine 81 residues in the catalytic reaction of type I signal peptidases. This conclusion is supported by the crystal structure of the homologous signal peptidase of Escherichia coli (Paetzel, M., Dalbey, R. E., and Strynadka, N. C. J. (1998) Nature 396, 186-190). In contrast, the SipS mutant proteins R84A, R84H, and D146A were inactivated by proteolytic degradation, indicating that the conserved arginine 84 and aspartic acid 146 residues are required to obtain a protease-resistant conformation. The cell wall-bound protease WprA was shown to be involved in the degradation of SipS D146A, which is in accord with the fact that SipS has a large extracytoplasmic domain. As WprA was not involved in the degradation of the SipS mutant proteins R84A and R84H, we conclude that multiple proteases are responsible for the thermal inactivation of temperature-sensitive SipS mutants.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Bacillus subtilis / Bacterial Proteins / Serine Endopeptidases / Membrane Proteins Language: En Journal: J Biol Chem Year: 1999 Document type: Article Affiliation country: Netherlands Country of publication: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Bacillus subtilis / Bacterial Proteins / Serine Endopeptidases / Membrane Proteins Language: En Journal: J Biol Chem Year: 1999 Document type: Article Affiliation country: Netherlands Country of publication: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA