Registration of three-dimensional cardiac catheter models to single-plane fluoroscopic images.
IEEE Trans Biomed Eng
; 46(12): 1471-9, 1999 Dec.
Article
in En
| MEDLINE
| ID: mdl-10612905
Transvenous cardiac procedures require accurate positioning of catheters within the geometrically complex cavities of the heart. Recently, nonfluoroscopic catheter tracking technologies have been developed to quantitate the (degrees-of-freedom) three-dimensional positions of intracardiac catheters. This paper presents a projection-Procrustes method to register an animated three-dimensional (3-D) model of multiple intracardiac catheters with a single-plane fluoroscopic image. Applying the computed transformation to the catheter coordinates enables the animated 3-D model of the catheters to be viewed from the same perspective as the fluoroscopic image. Mathematical simulations show that the computed transformation parameters are sensitive to both the position errors in the 3-D catheter coordinates and to the spatial distribution of the catheter-mounted transducers. Simulations with a realistic geometric model of three catheters with four transducers per catheter showed an angular error of 1.91 degrees +/- 0.27 degree for 3-D catheter position errors of 2.0 mm. An in vitro experiment demonstrated the feasibility of the method using a water tank phantom of three catheters and fluoroscopic images taken over an 80 degrees range. The mean angular error was 0.61 degree +/- 0.48 degree. The results of this study indicate that the projection-Procrustes method is a useful tool for registering 3-D catheter tracking models to single-plane fluoroscopic images.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Fluoroscopy
/
Cardiac Catheterization
Type of study:
Risk_factors_studies
Language:
En
Journal:
IEEE Trans Biomed Eng
Year:
1999
Document type:
Article
Affiliation country:
United States
Country of publication:
United States