Your browser doesn't support javascript.
loading
Localization of the epithelial Ca(2+) channel in rabbit kidney and intestine.
Hoenderop, Joost G J; Hartog, Anita; Stuiver, Marchel; Doucet, Alain; Willems, Peter H G M; Bindels, René J M.
Affiliation
  • Hoenderop JGJ; Department of Cell Physiology, Institute of Cellular Signalling, University of Nijmegen, The Netherlands.
  • Hartog A; Department of Biochemistry, Institute of Cellular Signalling, University of Nijmegen, The Netherlands.
  • Stuiver M; Department of Cell Physiology, Institute of Cellular Signalling, University of Nijmegen, The Netherlands.
  • Doucet A; Department of Cell Physiology, Institute of Cellular Signalling, University of Nijmegen, The Netherlands.
  • Willems PHGM; Service de Biologie Cellulaire, Centre d'Etudes de Saclay, Gif sur Yvette, France.
  • Bindels RJM; Department of Biochemistry, Institute of Cellular Signalling, University of Nijmegen, The Netherlands.
J Am Soc Nephrol ; 11(7): 1171-1178, 2000 Jul.
Article in En | MEDLINE | ID: mdl-10864572
ABSTRACT
The epithelial Ca(2+) channel (ECaC), which is exclusively expressed in 1,25-dihydroxyvitamin D(3)-responsive tissues, i.e., kidney, intestine, and placenta, is postulated to constitute the initial step in the process of transcellular Ca(2+) transport. To strengthen this postulated function, the present study compares the segmental and cellular distribution of ECaC and the other Ca(2+) transport proteins known to be involved in transcellular Ca(2+) transport. In rabbit kidney, ECaC mRNA and protein expression were primarily present in the connecting tubule. Immunopositive staining for the ECaC protein was exclusively found at the apical domain of this tubular segment. Importantly, ECaC completely colocalized with calbindin-D(28K), Na(+)-Ca(2+) exchanger (NCX), and plasma membrane Ca(2+) -ATPase (PMCA). A minority of cells along the distal tubule lacked immunopositive staining for ECaC and the other Ca(2+) transporting proteins. These negative cells were identified as intercalated cells. In intestine, ECaC was present in a thin layer along the apical membrane of the duodenal villus tip, whereas the crypt and goblet cells were negative. Again, a complete colocalization was observed between ECaC, calbindin-D(9K), and PMCA. In contrast to the kidney, NCX could not be detected in duodenum. The present finding that ECaC completely colocalizes with the Ca(2+) transport proteins in the connecting tubule and duodenum, together with its apical localization, further substantiates the postulated function of ECaC as the gatekeeper of active Ca(2+) (re)absorption.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Calcium Channels / Intestinal Mucosa / Kidney Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Am Soc Nephrol Journal subject: NEFROLOGIA Year: 2000 Document type: Article Affiliation country: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Calcium Channels / Intestinal Mucosa / Kidney Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Am Soc Nephrol Journal subject: NEFROLOGIA Year: 2000 Document type: Article Affiliation country: Netherlands