Hydrogen-deuterium exchange as a probe of folding and assembly in viral capsids.
J Mol Biol
; 306(3): 389-96, 2001 Feb 23.
Article
in En
| MEDLINE
| ID: mdl-11178899
The dynamics of proteins within large cellular assemblies are important in the molecular transformations that are required for macromolecular synthesis, transport, and metabolism. The capsid expansion (maturation) accompanying DNA packaging in the dsDNA bacteriophage P22 represents an experimentally accessible case of such a transformation. A novel method, based on hydrogen-deuterium exchange was devised to investigate the dynamics of capsid expansion. Mass spectrometric detection of deuterium incorporation allows for a sensitive and quantitative determination of hydrogen-deuterium exchange dynamics irrespective of the size of the assembly. Partial digestion of the exchanged protein with pepsin allows for region-specific assignment of the exchange. Procapsids and mature capsids were probed under native and slightly denaturing conditions. These experiments revealed regions that exhibit different degrees of flexibility in the procapsid and in the mature capsid. In addition, exchange and deuterium trapping during the process of expansion itself was observed and allowed for the identification of segments of the protein subunit that become buried or stabilized as a result of expansion. This approach may help to identify residues participating in macromolecular transformations and uncover novel patterns and hierarchies of interactions that determine functional movements within molecular machines.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Capsid
/
Protein Folding
/
Bacteriophage P22
/
Virus Assembly
/
Deuterium
Type of study:
Diagnostic_studies
Language:
En
Journal:
J Mol Biol
Year:
2001
Document type:
Article
Affiliation country:
United States
Country of publication:
Netherlands