RNA synthesis in nuclei isolated from early embryos of Xenopus laevis.
Biochim Biophys Acta
; 395(2): 152-63, 1975 Jun 16.
Article
in En
| MEDLINE
| ID: mdl-1138937
1. Rates of RNA synthesis in isolated Xenopus embryo nuclei decrease from blastula through gastrula and neurula stages to hatching tadpoles. 2. In blastula and gastrula nuclei, net synthesis of RNA continues for over 30 min, both in the presence of KCl at 0.4 M and in its absence. In nuclei from later stages, net synthesis continues for only about 10 min in the absence of KCl. 3. At low ionic strength, RNA synthesis in all nuclei is greater with optimum Mg-2+ (6 mM) than with optimum Mn-2+ (1 mM). At high ionic strength the reverse is true. 4. An unusual feature, which gradually disappears as development proceeds, is that curves relating RNA synthesis to KCl concentration show a peak at 0.1 M KCl. In blastula nuclei, RNA synthesis is more rapid at 0.1 M KCl than at 0.4 M. 5. This peak at low ionic strength is not observed in the presence of the initiation inhibitor rifamycin AF/013. It is concluded that the peak arises from initiation of RNA synthesis by an excess of RNA polymerases bound non-specifically to the isolated nuclei. The residual synthesis, representing elongation of chains that were initiated in vivo, still declines as development progresses. 6. In blastula nuclei, over half of the RNA synthesis is effected by polymerase II (inhibited by alpha-amanitin), the proportion remaining roughly constant with increasing ionic strength. In neurula nuclei, the proportion rises from about one-half to three-quarters. The initiation-dependent peak in blastula and gastrula nuclei is contributed by both alpha-amanitin-sensitive and alpha-amanitin-resistant enzymes.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
RNA
Limits:
Animals
Language:
En
Journal:
Biochim Biophys Acta
Year:
1975
Document type:
Article
Country of publication:
Netherlands