Your browser doesn't support javascript.
loading
Structural adaptation of microvascular networks: functional roles of adaptive responses.
Pries, A R; Reglin, B; Secomb, T W.
Affiliation
  • Pries AR; Department of Physiology, Freie Universität Berlin, D-14195 Berlin, Germany. pries@zedat.fu-berlin.de
Am J Physiol Heart Circ Physiol ; 281(3): H1015-25, 2001 Sep.
Article in En | MEDLINE | ID: mdl-11514266
ABSTRACT
Terminal vascular beds continually adapt to changing demands. A theoretical model is used to simulate structural diameter changes in response to hemodynamic and metabolic stimuli in microvascular networks. Increased wall shear stress and decreased intravascular pressure are assumed to stimulate diameter increase. Intravascular partial pressure of oxygen (PO(2)) is estimated for each segment. Decreasing PO(2) is assumed to generate a metabolic stimulus for diameter increase, which acts locally, upstream via conduction along vessel walls, and downstream via metabolite convection. By adjusting the sensitivities to these stimuli, good agreement is achieved between predicted network characteristics and experimental data from microvascular networks in rat mesentery. Reduced pressure sensitivity leads to increased capillary pressure with reduced viscous energy dissipation and little change in tissue oxygenation. Dissipation decreases strongly with decreased metabolic response. Below a threshold level of metabolic response flow shifts to shorter pathways through the network, and oxygen supply efficiency decreases sharply. In summary, the distribution of vessel diameters generated by the simulated adaptive process allows the network to meet the functional demands of tissue while avoiding excessive viscous energy dissipation.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Adaptation, Physiological / Mesentery / Microcirculation / Models, Cardiovascular Type of study: Prognostic_studies Limits: Animals Language: En Journal: Am J Physiol Heart Circ Physiol Journal subject: CARDIOLOGIA / FISIOLOGIA Year: 2001 Document type: Article Affiliation country: Germany
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Adaptation, Physiological / Mesentery / Microcirculation / Models, Cardiovascular Type of study: Prognostic_studies Limits: Animals Language: En Journal: Am J Physiol Heart Circ Physiol Journal subject: CARDIOLOGIA / FISIOLOGIA Year: 2001 Document type: Article Affiliation country: Germany
...