Your browser doesn't support javascript.
loading
Improving visibility depth in passive underwater imaging by use of polarization.
Chang, Peter C Y; Flitton, Jonathan C; Hopcraft, Keith I; Jakeman, Eric; Jordan, David L; Walker, John G.
Affiliation
  • Chang PC; School of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom. peter.chang@nottingham.ac.uk
Appl Opt ; 42(15): 2794-803, 2003 May 20.
Article in En | MEDLINE | ID: mdl-12777017
ABSTRACT
Results are presented that demonstrate the effectiveness of using polarization discrimination to improve visibility when imaging in a scattering medium. The study is motivated by the desire to improve visibility depth in turbid environments, such as the sea. Most previous research in this area has concentrated on the active illumination of objects with polarized light. We consider passive or ambient illumination, such as that deriving from sunlight or a cloudy sky. The basis for the improvements in visibility observed is that single scattering by small particles introduces a significant amount of polarization into light at scattering angles near 90 degrees This light can then be distinguished from light scattered by an object that remains almost completely unpolarized. Results were obtained from a Monte Carlo simulation and from a small-scale experiment in which an object was immersed in a cell filled with polystyrene latex spheres suspended in water. In both cases, the results showed an improvement in contrast and visibility depth for obscuration that was due to Rayleigh particles, but less improvement was obtained for larger scatterers.
Search on Google
Collection: 01-internacional Database: MEDLINE Language: En Journal: Appl Opt Year: 2003 Document type: Article Affiliation country: United kingdom
Search on Google
Collection: 01-internacional Database: MEDLINE Language: En Journal: Appl Opt Year: 2003 Document type: Article Affiliation country: United kingdom