Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications.
Chemphyschem
; 4(6): 595-603, 2003 Jun 16.
Article
in En
| MEDLINE
| ID: mdl-12836481
Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas > 300 m2 g-1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye-doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer-to-aggregate ratio at elevated dye concentrations. The dye-doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye-doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high-refractive index, mesostructured, dye-doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Chemphyschem
Journal subject:
BIOFISICA
/
QUIMICA
Year:
2003
Document type:
Article
Affiliation country:
Australia
Country of publication:
Germany