Your browser doesn't support javascript.
loading
Augmented contractile response of vascular smooth muscle in a diabetic mouse model.
Okon, Elena B; Szado, Tania; Laher, Ismail; McManus, Bruce; van Breemen, Cornelis.
Affiliation
  • Okon EB; iCAPTUR(4)E Centre and Department of Pathology, University of British Columbia, Vancouver, Canada. eokon@mrl.ubc.ca
J Vasc Res ; 40(6): 520-30, 2003.
Article in En | MEDLINE | ID: mdl-14646372
The vasomotor properties of isolated aortae and mesenteric arteries of insulin-resistant ob/ob and 57CBL/6J mice were compared in organ bath studies. Vessels from ob/ob mice were more sensitive to phenylephrine. Pretreatment with L-NAME caused similar leftward shifts of the phenylephrine concentration response curves in diabetic and non-diabetic vessels. The ob/ob aortae contracted in response to phenylephrine with roughly twice the force while they were not stiffer than control aortae. L-NAME caused a greater percentage increase in maximal force in the control than in the ob/ob tissue. Denudation potentiated force in the control aortae, but not in the ob/ob aortae. Endothelium-dependent relaxation in the ob/ob aortae and mesenteric arteries was impaired as manifested by a decreased sensitivity and maximal relaxation to acetylcholine, while the aortic basal eNOS mRNA levels did not differ between the two strains. In addition, ob/ob aortae were less sensitive to the nitric oxide donor sodium nitroprusside. Inhibition of endogenous prostaglandin synthesis with indomethacin (10 microM) partly normalized the contractile response of the ob/ob aortae and enhanced their endothelium-dependent relaxation. Neither blockade of endothelin-1 receptors (bosentan, 10 microM) nor PKC inhibition (calphostin, 1 microM) affected the contractile response to phenylephrine in the mouse aortae of either strain. In conclusion, vascular dysfunction in the aorta and mesenteric artery of ob/ob mice are due to increased smooth muscle contractility and impaired dilation but not to changes in elasticity of the vascular wall. Endothelium-produced prostaglandins contribute to the increased vasoconstriction.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Diabetes Mellitus, Type 2 / Muscle Contraction / Muscle, Smooth, Vascular Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Vasc Res Journal subject: ANGIOLOGIA Year: 2003 Document type: Article Affiliation country: Canada Country of publication: Switzerland
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Diabetes Mellitus, Type 2 / Muscle Contraction / Muscle, Smooth, Vascular Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Vasc Res Journal subject: ANGIOLOGIA Year: 2003 Document type: Article Affiliation country: Canada Country of publication: Switzerland