Augmented contractile response of vascular smooth muscle in a diabetic mouse model.
J Vasc Res
; 40(6): 520-30, 2003.
Article
in En
| MEDLINE
| ID: mdl-14646372
The vasomotor properties of isolated aortae and mesenteric arteries of insulin-resistant ob/ob and 57CBL/6J mice were compared in organ bath studies. Vessels from ob/ob mice were more sensitive to phenylephrine. Pretreatment with L-NAME caused similar leftward shifts of the phenylephrine concentration response curves in diabetic and non-diabetic vessels. The ob/ob aortae contracted in response to phenylephrine with roughly twice the force while they were not stiffer than control aortae. L-NAME caused a greater percentage increase in maximal force in the control than in the ob/ob tissue. Denudation potentiated force in the control aortae, but not in the ob/ob aortae. Endothelium-dependent relaxation in the ob/ob aortae and mesenteric arteries was impaired as manifested by a decreased sensitivity and maximal relaxation to acetylcholine, while the aortic basal eNOS mRNA levels did not differ between the two strains. In addition, ob/ob aortae were less sensitive to the nitric oxide donor sodium nitroprusside. Inhibition of endogenous prostaglandin synthesis with indomethacin (10 microM) partly normalized the contractile response of the ob/ob aortae and enhanced their endothelium-dependent relaxation. Neither blockade of endothelin-1 receptors (bosentan, 10 microM) nor PKC inhibition (calphostin, 1 microM) affected the contractile response to phenylephrine in the mouse aortae of either strain. In conclusion, vascular dysfunction in the aorta and mesenteric artery of ob/ob mice are due to increased smooth muscle contractility and impaired dilation but not to changes in elasticity of the vascular wall. Endothelium-produced prostaglandins contribute to the increased vasoconstriction.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Diabetes Mellitus, Type 2
/
Muscle Contraction
/
Muscle, Smooth, Vascular
Type of study:
Prognostic_studies
Limits:
Animals
Language:
En
Journal:
J Vasc Res
Journal subject:
ANGIOLOGIA
Year:
2003
Document type:
Article
Affiliation country:
Canada
Country of publication:
Switzerland