High-field proton MRS of human brain.
Eur J Radiol
; 48(2): 146-53, 2003 Nov.
Article
in En
| MEDLINE
| ID: mdl-14680905
Proton magnetic resonance spectroscopy (1H-MRS) of the brain reveals specific biochemical information about cerebral metabolites, which may support clinical diagnoses and enhance the understanding of neurological disorders. The advantages of performing 1H-MRS at higher field strengths include better signal to noise ratio (SNR) and increased spectral, spatial and temporal resolution, allowing the acquisition of high quality, easily quantifiable spectra in acceptable imaging times. In addition to improved measurement precision of N-acetylaspartate, choline, creatine and myo-inositol, high-field systems allow the high-resolution measurement of other metabolites, such as glutamate, glutamine, gamma-aminobutyric acid, scyllo-inositol, aspartate, taurine, N-acetylaspartylglutamate, glucose and branched amino acids, thus extending the range of metabolic information. However, these advantages may be hampered by intrinsic field-dependent technical difficulties, such as decreased T2 signal, chemical shift dispersion errors, J-modulation anomalies, increased magnetic susceptibility, eddy current artifacts, limitations in the design of homogeneous and sensitive radiofrequency (RF) coils, magnetic field instability and safety issues. Several studies demonstrated that these limitations could be overcome, suggesting that the appropriate optimization of high-field 1H-MRS would expand the application in the fields of clinical research and diagnostic routine.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Brain
/
Magnetic Resonance Spectroscopy
Limits:
Humans
Language:
En
Journal:
Eur J Radiol
Year:
2003
Document type:
Article
Affiliation country:
Italy
Country of publication:
Ireland