beta-Arrestins bind and decrease cell-surface abundance of the Na+/H+ exchanger NHE5 isoform.
Proc Natl Acad Sci U S A
; 102(8): 2790-5, 2005 Feb 22.
Article
in En
| MEDLINE
| ID: mdl-15699339
The neuronal Na(+)/H(+) exchanger NHE5 isoform not only resides in the plasma membrane but also accumulates in recycling vesicles by means of clathrin-mediated endocytosis. To further investigate the underlying molecular mechanisms, a human brain cDNA library was screened for proteins that interact with the cytoplasmic C-terminal region of NHE5 by using yeast two-hybrid methodology. One candidate cDNA identified by this procedure encoded beta-arrestin2, a specialized adaptor/scaffolding protein required for internalization and signaling of members of the G protein-coupled receptor superfamily. Direct interaction between the two proteins was demonstrated in vitro by GST fusion protein pull-down assays. Sequences within the N-terminal receptor activation-recognition domain and the C-terminal secondary receptor-binding domain of beta-arrestin2 conferred strong binding to the C terminus of NHE5. Full-length NHE5 and beta-arrestin2 also associated in intact cells, as revealed by their coimmunoprecipitation from extracts of transfected CHO cells. Moreover, ectopic expression of both proteins caused a redistribution of beta-arrestin2 from the cytoplasm to vesicles containing NHE5, and significantly decreased the abundance of the transporter at the cell surface. Comparable results were also obtained for the beta-arrestin1 isoform. These data reveal a broader role for arrestins in the trafficking of integral plasma membrane proteins than previously recognized.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Sodium-Hydrogen Exchangers
/
Arrestins
Limits:
Animals
/
Humans
Language:
En
Journal:
Proc Natl Acad Sci U S A
Year:
2005
Document type:
Article
Affiliation country:
United States
Country of publication:
United States