Your browser doesn't support javascript.
loading
Learning deficits induced by sleep deprivation and recovery are not associated with altered [(3)H]muscimol and [(3)H]flunitrazepam binding.
Dubiela, Francisco Paulino; Oliveira, Maria Gabriela Menezes de; Moreira, Karin Di Monteiro; Nobrega, José N; Tufik, Sergio; Hipólide, Débora Cristina.
Affiliation
  • Dubiela FP; Psychobiology Department, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 Vila Clementino, SP, 04024-002 São Paulo, Brazil.
Brain Res ; 1037(1-2): 157-63, 2005 Mar 10.
Article in En | MEDLINE | ID: mdl-15777764
ABSTRACT
Several studies have shown that sleep deprivation produces deficits in learning tasks, but mechanisms underlying these effects remain unclear. Other lines of evidence indicate an involvement of brain GABA systems in cognitive processes. Here, we investigated the possibility that alterations in GABA(A) or benzodiazepine (BDZ) receptor binding might underlie avoidance deficits induced by sleep deprivation. Rats were deprived of sleep for 96 h using the platform method and then trained in a step-through inhibitory avoidance task, or allowed to recover sleep for 24 h before training (sleep rebound group). Thirty minutes after training, animals were given a retention test. Both sleep-deprived and sleep-recovered animals showed a significant impairment in avoidance responding compared to cage controls, and the sleep-deprived group performed significant worse than the sleep-recovered group. A separate group of animals was sacrificed either immediately after 96 h of sleep deprivation or after 96 h of sleep deprivation followed by 24 h of sleep recovery. [(3)H]muscimol and [(3)H]flunitrazepam binding were examined by quantitative autoradiography in 42 brain regions, including areas involved in cognitive processes. No significant differences among groups were found in any brain region, except for a reduction in [(3)H]flunitrazepam binding in the frontal cortex of sleep-recovered animals. These results confirm the deleterious effects of sleep loss on inhibitory avoidance learning, but suggest that such deficits cannot be attributed to altered GABA(A) or BDZ binding in brain.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Sleep Deprivation / GABA Modulators / GABA Agonists / Flunitrazepam / Learning Disabilities / Muscimol Type of study: Etiology_studies / Risk_factors_studies Limits: Animals Language: En Journal: Brain Res Year: 2005 Document type: Article Affiliation country: Brazil
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Sleep Deprivation / GABA Modulators / GABA Agonists / Flunitrazepam / Learning Disabilities / Muscimol Type of study: Etiology_studies / Risk_factors_studies Limits: Animals Language: En Journal: Brain Res Year: 2005 Document type: Article Affiliation country: Brazil