Your browser doesn't support javascript.
loading
Relationships between genomic, cell cycle, and mutagenic responses of TK6 cells exposed to DNA damaging chemicals.
Islaih, Mohammed; Halstead, Bartley W; Kadura, Ibrahim A; Li, Baohui; Reid-Hubbard, Jaclyn L; Flick, Leah; Altizer, Julie L; Thom Deahl, J; Monteith, David K; Newton, Ronald K; Watson, David E.
Affiliation
  • Islaih M; Investigative Toxicology, Toxicology and Drug Disposition, A Division of Eli Lilly and Company, P.O. Box 708, Greenfield, IN 46140, USA.
Mutat Res ; 578(1-2): 100-16, 2005 Oct 15.
Article in En | MEDLINE | ID: mdl-16109433
Genotoxic stress causes a variety of cellular and molecular responses in mammalian cells, including cell cycle arrest, DNA repair, and apoptosis. These responses result from the interplay between the genotoxic events themselves, and the biological context in which they occur. To better understand this interplay, we investigated cytotoxicty, mutagenesis, cell cycle profile, and global gene expression in the human TK6 lymphoblastoid cell line exposed to six genotoxicants. The six compounds have broad structural diversity and cause genotoxic stress by many different mechanisms, including covalent modification (methyl methanesulfonate, mitomycin C), reactive oxygen species (hydrogen peroxide, bleomycin), and topoisomerase II inhibition (etoposide and doxorubicin). Cell cycle analysis was performed 4 and 20 h following a 4 h chemical exposure. Cells exposed to all compounds experienced S-phase arrest at the 8h time point, but by 24 h had markedly different cell cycle responses. Cells exposed to compounds that cause covalent modification had a strong G2/M arrest at 24 h. These cells also had a robust (>25-fold) increase in mutant frequency, and had a moderate but sustained p53 response at 4, 8, and 24h, detectable as approximately 2-5-fold increases in transcript levels for p21WAF1/CIP1, GADD45alpha, BTG2, and cyclin G1. In contrast, cells exposed to the reactive oxygen compounds had little or no G2/M arrest at 24 h and no increase in mutant frequency. In addition, these compounds caused a strong but transient induction of the p53 pathway, detectable as 15-25-fold increases in p21WAF1/CIP1 transcription at 4 h that decreased dramatically by 8h and was near control levels at 24 h. Thus, the mutagenic effect of compounds was consistent with G2/M arrest and sustained kinetics of p53 pathway activation. Global gene expression data were also consistent with the mutagenesis data. Activation of genes associated with cell cycle arrest, the p53 and TNF-related pathways, and chemokines and chemokine receptors, were particularly evident for the reactive oxygen compounds. In contrast, the most mutagenic compounds caused fewer and less robust changes in global gene expression. There was therefore an inverse relationship between global gene expression and mutagenic potency.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: DNA Damage / Lymphocytes / Genome, Human / Cell Cycle / Mutagens Type of study: Prognostic_studies Limits: Humans Language: En Journal: Mutat Res Year: 2005 Document type: Article Affiliation country: United States Country of publication: Netherlands
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: DNA Damage / Lymphocytes / Genome, Human / Cell Cycle / Mutagens Type of study: Prognostic_studies Limits: Humans Language: En Journal: Mutat Res Year: 2005 Document type: Article Affiliation country: United States Country of publication: Netherlands