Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Phys Rev E Stat Nonlin Soft Matter Phys
; 72(4 Pt 2): 046706, 2005 Oct.
Article
in En
| MEDLINE
| ID: mdl-16383566
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Type of study:
Prognostic_studies
Language:
En
Journal:
Phys Rev E Stat Nonlin Soft Matter Phys
Journal subject:
BIOFISICA
/
FISIOLOGIA
Year:
2005
Document type:
Article
Affiliation country:
United States
Country of publication:
United States