Your browser doesn't support javascript.
loading
Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT.
Sain, Nivedita; Krishnan, Bhavani; Ormerod, Michael G; De Rienzo, Assunta; Liu, Wai M; Kaye, Stanley B; Workman, Paul; Jackman, Ann L.
Affiliation
  • Sain N; The Haddow Laboratories, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom.
Mol Cancer Ther ; 5(5): 1197-208, 2006 May.
Article in En | MEDLINE | ID: mdl-16731752
Activation of the phosphatidylinositol-3-kinase (PI3K)/AKT survival pathway is a mechanism of cytotoxic drug resistance in ovarian cancer, and inhibitors of this pathway can sensitize to cytotoxic drugs. The HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) depletes some proteins involved in PI3K/AKT signaling, e.g., ERBB2, epidermal growth factor receptor (EGFR), and phosphorylated AKT (p-AKT). 17-AAG and paclitaxel were combined (at a fixed 1:1 ratio of their IC(50)) in four ovarian cancer cell lines that differ in expression of p-AKT, EGFR, and ERBB2. The EGFR-overexpressing A431 and KB epidermoid cell lines were also included. Combination indices (CI) were calculated using the median-effect equation and interpreted in the context of 17-AAG-mediated inhibition of PI3K signaling. Synergy was observed in IGROV-1- and ERBB2-overexpressing SKOV-3 ovarian cancer cells that express a high level of constitutively activated p-AKT [CI at fraction unaffected (fu)(0.5) = 0.50 and 0.53, respectively]. Slight synergy was observed in A431 cells (moderate p-AKT/overexpressed EGFR; CI at fu(0.5) = 0.76) and antagonism in CH1 (moderate p-AKT), HX62 cells (low p-AKT), and KB cells (low p-AKT/overexpressed EGFR; CI at fu(50) = 3.0, 3.5, and 2.0, respectively). The observed effects correlated with changes in the rate of apoptosis induction. 17-AAG induced a decrease in HSP90 client proteins (e.g., C-RAF, ERBB2, and p-AKT) or in downstream markers of their activity (e.g., phosphorylated extracellular signal-regulated kinase or p-AKT) in SKOV-3, IGROV-1, and CH1 cells at IC(50) concentrations. A non-growth-inhibitory concentration (6 nmol/L) reduced the phosphorylation of AKT (but not extracellular signal-regulated kinase) and sensitized SKOV-3 cells to paclitaxel. In conclusion, 17-AAG may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by ERBB2 and/or p-AKT.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Ovarian Neoplasms / Antineoplastic Combined Chemotherapy Protocols / Paclitaxel / Rifabutin / HSP90 Heat-Shock Proteins / Proto-Oncogene Proteins c-akt Limits: Female / Humans Language: En Journal: Mol Cancer Ther Journal subject: ANTINEOPLASICOS Year: 2006 Document type: Article Affiliation country: United kingdom Country of publication: United States
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Ovarian Neoplasms / Antineoplastic Combined Chemotherapy Protocols / Paclitaxel / Rifabutin / HSP90 Heat-Shock Proteins / Proto-Oncogene Proteins c-akt Limits: Female / Humans Language: En Journal: Mol Cancer Ther Journal subject: ANTINEOPLASICOS Year: 2006 Document type: Article Affiliation country: United kingdom Country of publication: United States