Your browser doesn't support javascript.
loading
Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast.
Devasahayam, Gina; Ritz, Danilo; Helliwell, Stephen B; Burke, Daniel J; Sturgill, Thomas W.
Affiliation
  • Devasahayam G; Departments of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
Proc Natl Acad Sci U S A ; 103(47): 17840-5, 2006 Nov 21.
Article in En | MEDLINE | ID: mdl-17095607
ABSTRACT
The rapamycin.FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+ -ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae / Signal Transduction / Calcium-Transporting ATPases / Molecular Chaperones / Saccharomyces cerevisiae Proteins / Golgi Apparatus Type of study: Prognostic_studies Language: En Journal: Proc Natl Acad Sci U S A Year: 2006 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae / Signal Transduction / Calcium-Transporting ATPases / Molecular Chaperones / Saccharomyces cerevisiae Proteins / Golgi Apparatus Type of study: Prognostic_studies Language: En Journal: Proc Natl Acad Sci U S A Year: 2006 Document type: Article Affiliation country: United States