Your browser doesn't support javascript.
loading
AMPA-mediated excitotoxicity in oligodendrocytes: role for Na(+)-K(+)-Cl(-) co-transport and reversal of Na(+)/Ca(2+) exchanger.
Chen, Hai; Kintner, Douglas B; Jones, Mathew; Matsuda, Toshio; Baba, Akemichi; Kiedrowski, Lech; Sun, Dandan.
Affiliation
  • Chen H; Neuroscience Training Program, University of Wisconsin Medical School, Madison, Wisconsin, USADepartments of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin, USAPhysiology, University of Wisconsin Medical School, Madison, Wisconsin, USAGraduate School of Pharmaceutical Scien
  • Kintner DB; Neuroscience Training Program, University of Wisconsin Medical School, Madison, Wisconsin, USADepartments of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin, USAPhysiology, University of Wisconsin Medical School, Madison, Wisconsin, USAGraduate School of Pharmaceutical Scien
  • Jones M; Neuroscience Training Program, University of Wisconsin Medical School, Madison, Wisconsin, USADepartments of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin, USAPhysiology, University of Wisconsin Medical School, Madison, Wisconsin, USAGraduate School of Pharmaceutical Scien
  • Matsuda T; Neuroscience Training Program, University of Wisconsin Medical School, Madison, Wisconsin, USADepartments of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin, USAPhysiology, University of Wisconsin Medical School, Madison, Wisconsin, USAGraduate School of Pharmaceutical Scien
  • Baba A; Neuroscience Training Program, University of Wisconsin Medical School, Madison, Wisconsin, USADepartments of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin, USAPhysiology, University of Wisconsin Medical School, Madison, Wisconsin, USAGraduate School of Pharmaceutical Scien
  • Kiedrowski L; Neuroscience Training Program, University of Wisconsin Medical School, Madison, Wisconsin, USADepartments of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin, USAPhysiology, University of Wisconsin Medical School, Madison, Wisconsin, USAGraduate School of Pharmaceutical Scien
  • Sun D; Neuroscience Training Program, University of Wisconsin Medical School, Madison, Wisconsin, USADepartments of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin, USAPhysiology, University of Wisconsin Medical School, Madison, Wisconsin, USAGraduate School of Pharmaceutical Scien
J Neurochem ; 102(6): 1783-1795, 2007 Sep.
Article in En | MEDLINE | ID: mdl-17490438
We investigated the role of Na(+)-K(+)-Cl(-) co-transporter isoform 1 (NKCC1) and reversal of Na(+)/Ca(2+) exchanger (NCX(rev)) in glutamate-mediated excitotoxicity in oligodendrocytes obtained from rat spinal cords (postnatal day 6-8). An immunocytochemical characterization showed that these cultures express NKCC1 and Na(+)/Ca(2+) exchanger isoforms 1, 2, and 3 (NCX1, NCX2, NCX3). Exposing the cultures to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) plus cyclothiazide (CTZ) led to a transient rise in intracellular (), which was followed by a sustained overload, NKCC1 phosphorylation, and a NKCC1-mediated Na(+) influx. In the presence of a specific AMPA receptor inhibitor 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), the AMPA/CTZ failed to elicit any changes in . The AMPA/CTZ-induced sustained rise led to mitochondrial Ca(2+) accumulation, release of cytochrome c from mitochondria, and cell death. The AMPA/CTZ-elicited increase, mitochondrial damage, and cell death were significantly reduced by inhibiting NKCC1 or NCX(rev). These data suggest that in cultured oligodendrocytes, activation of AMPA receptors leads to NKCC1 phosphorylation that enhances NKCC1-mediated Na(+) influx. The latter triggers NCX(rev) and NCX(rev)-mediated overload and compromises mitochondrial function and cellular viability.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Central Nervous System / Oligodendroglia / Receptors, AMPA / Sodium-Calcium Exchanger / Sodium-Potassium-Chloride Symporters / Neurotoxins Limits: Animals Language: En Journal: J Neurochem Year: 2007 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Central Nervous System / Oligodendroglia / Receptors, AMPA / Sodium-Calcium Exchanger / Sodium-Potassium-Chloride Symporters / Neurotoxins Limits: Animals Language: En Journal: J Neurochem Year: 2007 Document type: Article Country of publication: United kingdom