Your browser doesn't support javascript.
loading
In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin.
Wilmink, Gerald J; Opalenik, Susan R; Beckham, Joshua T; Mackanos, Mark A; Nanney, Lillian B; Contag, Christopher H; Davidson, Jeffrey M; Jansen, E Duco.
Affiliation
  • Wilmink GJ; Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37235, USA.
J Biomed Opt ; 13(5): 054066, 2008.
Article in En | MEDLINE | ID: mdl-19021444
Laser surgical ablation is achieved by selecting laser parameters that remove confined volumes of target tissue and cause minimal collateral damage. Previous studies have measured the effects of wavelength on ablation, but neglected to measure the cellular impact of ablation on cells outside the lethal zone. In this study, we use optical imaging in addition to conventional assessment techniques to evaluate lethal and sublethal collateral damage after ablative surgery with a free-electron laser (FEL). Heat shock protein (HSP) expression is used as a sensitive quantitative marker of sublethal damage in a transgenic mouse strain, with the hsp70 promoter driving luciferase and green fluorescent protein (GFP) expression (hsp70A1-L2G). To examine the wavelength dependence in the mid-IR, laser surgery is conducted on the hsp70A1-L2G mouse using wavelengths targeting water (OH stretch mode, 2.94 microm), protein (amide-II band, 6.45 microm), and both water and protein (amide-I band, 6.10 microm). For all wavelengths tested, the magnitude of hsp70 expression is dose-dependent and maximal 5 to 12 h after surgery. Tissues treated at 6.45 microm have approximately 4x higher hsp70 expression than 6.10 microm. Histology shows that under comparable fluences, tissue injury at the 2.94-microm wavelength was 2x and 3x deeper than 6.45 and 6.10 microm, respectively. The 6.10-microm wavelength generates the least amount of epidermal hyperplasia. Taken together, this data suggests that the 6.10-microm wavelength is a superior wavelength for laser ablation of skin.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Radiation Injuries / Skin / HSP70 Heat-Shock Proteins / Gene Expression Profiling / Dermoscopy / Laser Therapy Type of study: Diagnostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: J Biomed Opt Journal subject: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Year: 2008 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Radiation Injuries / Skin / HSP70 Heat-Shock Proteins / Gene Expression Profiling / Dermoscopy / Laser Therapy Type of study: Diagnostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: J Biomed Opt Journal subject: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Year: 2008 Document type: Article Affiliation country: United States Country of publication: United States