Your browser doesn't support javascript.
loading
Msx2 induces epithelial-mesenchymal transition in mouse mammary epithelial cells through upregulation of Cripto-1.
di Bari, M G; Ginsburg, E; Plant, J; Strizzi, L; Salomon, D S; Vonderhaar, B K.
Affiliation
  • di Bari MG; Molecular and Cellular Endocrinology Section, Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
J Cell Physiol ; 219(3): 659-66, 2009 Jun.
Article in En | MEDLINE | ID: mdl-19170109
Epithelial-mesenchymal transition (EMT) is a process occurring during both embryogenesis and early stages of invasive cancer. Epithelial cells that undergo EMT become more migratory and invasive with a mesenchymal morphology. Herein we assess EMT induction in a mouse mammary epithelial cell line driven by Msx2, a homeobox-containing transcription factor important during mammary gland development. NMuMG cells, a normal mouse mammary epithelial cell line, stably transfected with a Msx2 cDNA showed downregulation of an epithelial marker E-cadherin and upregulation of the mesenchymal markers vimentin and N-cadherin. Furthermore, overexpression of Cripto-1, a member of the epidermal growth factor-CFC protein family already known to be involved in EMT, was detected in Msx2-transfected cells. The expression of Cripto-1 was accompanied by activation of the tyrosine kinase c-Src pathway and an increase in the invasive ability of the cells. Functional assays also demonstrated inhibition of the invasive behavior of the Msx2-transfected cells by a c-Src specific inhibitor. Moreover, immunohistochemistry of human infiltrating breast carcinomas showed positive staining for Msx2 only in the infiltrating tumor cells while the non-infiltrating tumor cells were negative. These results suggest that Msx2 may play a significant role in promoting EMT in epithelial cells that acquire properties involved in tumor invasion. J. Cell. Physiol. 219: 659-666, 2009. Published 2009 Wiley-Liss, Inc.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Membrane Glycoproteins / Homeodomain Proteins / Epidermal Growth Factor / Mammary Glands, Animal / Neoplasm Proteins Language: En Journal: J Cell Physiol Year: 2009 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Membrane Glycoproteins / Homeodomain Proteins / Epidermal Growth Factor / Mammary Glands, Animal / Neoplasm Proteins Language: En Journal: J Cell Physiol Year: 2009 Document type: Article Affiliation country: United States Country of publication: United States