Your browser doesn't support javascript.
loading
Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change.
Pelini, Shannon L; Dzurisin, Jason D K; Prior, Kirsten M; Williams, Caroline M; Marsico, Travis D; Sinclair, Brent J; Hellmann, Jessica J.
Affiliation
  • Pelini SL; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
Proc Natl Acad Sci U S A ; 106(27): 11160-5, 2009 Jul 07.
Article in En | MEDLINE | ID: mdl-19549861
ABSTRACT
There is a pressing need to predict how species will change their geographic ranges under climate change. Projections typically assume that temperature is a primary fitness determinant and that populations near the poleward (and upward) range boundary are preadapted to warming. Thus, poleward, peripheral populations will increase with warming, and these increases facilitate poleward range expansions. We tested the assumption that poleward, peripheral populations are enhanced by warming using 2 butterflies (Erynnis propertius and Papilio zelicaon) that co-occur and have contrasting degrees of host specialization and interpopulation genetic differentiation. We performed a reciprocal translocation experiment between central and poleward, peripheral populations in the field and simulated a translocation experiment that included alternate host plants. We found that the performance of both central and peripheral populations of E. propertius were enhanced during the summer months by temperatures characteristic of the range center but that local adaptation of peripheral populations to winter conditions near the range edge could counteract that enhancement. Further, poleward range expansion in this species is prevented by a lack of host plants. In P. zelicaon, the fitness of central and peripheral populations decreased under extreme summer temperatures that occurred in the field at the range center. Performance in this species also was affected by an interaction of temperature and host plant such that host species strongly mediated the fitness of peripheral individuals under differing simulated temperatures. Altogether we have evidence that facilitation of poleward range shifts through enhancement of peripheral populations is unlikely in either study species.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Butterflies / Climate / Animal Migration Type of study: Prognostic_studies Limits: Animals Language: En Journal: Proc Natl Acad Sci U S A Year: 2009 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Butterflies / Climate / Animal Migration Type of study: Prognostic_studies Limits: Animals Language: En Journal: Proc Natl Acad Sci U S A Year: 2009 Document type: Article Affiliation country: United States