Your browser doesn't support javascript.
loading
Absorption enhancement using photonic crystals for silicon thin film solar cells.
Park, Yeonsang; Drouard, Emmanuel; El Daif, Ounsi; Letartre, Xavier; Viktorovitch, Pierre; Fave, Alain; Kaminski, Anne; Lemiti, Mustapha; Seassal, Christian.
Affiliation
  • Park Y; Université de Lyon, Institut des Nanotechnologies de Lyon, UMR 5270 CNRS- INSA-ECL-UCBL, 69134 Ecully Cedex, France
Opt Express ; 17(16): 14312-21, 2009 Aug 03.
Article in En | MEDLINE | ID: mdl-19654839
ABSTRACT
We propose a design that increases significantly the absorption of a thin layer of absorbing material such as amorphous silicon. This is achieved by patterning a one-dimensional photonic crystal (1DPC) in this layer. Indeed, by coupling the incident light into slow Bloch modes of the 1DPC, we can control the photon lifetime and then, enhance the absorption integrated over the whole solar spectrum. Optimal parameters of the 1DPC maximize the integrated absorption in the wavelength range of interest, up to 45% in both S and P polarization states instead of 33% for the unpatterned, 100 nm thick amorphous silicon layer. Moreover, the absorption is tolerant with respect to fabrication errors, and remains relatively stable if the angle of incidence is changed.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Electric Power Supplies / Silicon / Solar Energy / Optical Devices Language: En Journal: Opt Express Journal subject: OFTALMOLOGIA Year: 2009 Document type: Article Affiliation country: France
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Electric Power Supplies / Silicon / Solar Energy / Optical Devices Language: En Journal: Opt Express Journal subject: OFTALMOLOGIA Year: 2009 Document type: Article Affiliation country: France