Epithelial transformation by KLF4 requires Notch1 but not canonical Notch1 signaling.
Cancer Biol Ther
; 8(19): 1840-51, 2009 Oct.
Article
in En
| MEDLINE
| ID: mdl-19717984
The transcription factors Notch1 and KLF4 specify epithelial cell fates and confer stem cell properties. Suggesting a functional relationship, each gene can act to promote or suppress tumorigenesis in a context-dependent manner, and alteration of KLF4 or Notch pathway genes in mice gives rise to similar phenotypes. Activation of a conditional allele of KLF4 in RK3E epithelial cells rapidly induces expression of Notch1 mRNA and the active, intracellular form of Notch1. KLF4-induced transformation was suppressed by knockdown of endogenous Notch1 using siRNA or an inhibitor of gamma-secretase. Chromatin immunoprecipitation assay shows that KLF4 binds to the proximal Notch1 promoter in human mammary epithelial cells, and siRNA-mediated suppression of KLF4 in human mammary cancer cells results in reduced expression of Notch1. Furthermore, KLF4 and Notch1 expression are correlated in primary human breast tumors (N = 89; Pearson analysis, r > 0.5, p < 0.0001). Like KLF4, Notch1 was previously shown to induce transformation of rat cells immortalized with adenovirus E1A, similar to RK3E cells. We therefore compared the signaling requirements for Notch1- or KLF4-induced malignant transformation of RK3E. As expected, transformation by Notch1 was suppressed by dominant-negative CSL or MAML1, inhibitors of canonical Notch1 signaling. However, these inhibitors did not suppress transformation by KLF4. Therefore, while KLF4-induced transformation requires Notch1, canonical Notch1 signaling is not required, and Notch1 may signal through a distinct pathway in cells with increased KLF4 activity. These results suggest that KLF4 could contribute to breast tumor progression by activating synthesis of Notch1 and by promoting signaling through a non-canonical Notch1 pathway.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Cell Transformation, Neoplastic
/
Kruppel-Like Transcription Factors
/
Receptor, Notch1
Limits:
Animals
/
Female
/
Humans
Language:
En
Journal:
Cancer Biol Ther
Journal subject:
NEOPLASIAS
/
TERAPEUTICA
Year:
2009
Document type:
Article
Affiliation country:
United States
Country of publication:
United States