Your browser doesn't support javascript.
loading
Modeling the optical behavior of complex organic media: from molecules to materials.
Sullivan, Philip A; Rommel, Harrison L; Takimoto, Yoshinari; Hammond, Scott R; Bale, Denise H; Olbricht, Benjamin C; Liao, Yi; Rehr, John; Eichinger, Bruce E; Jen, Alex K-Y; Reid, Philip J; Dalton, Larry R; Robinson, Bruce H.
Affiliation
  • Sullivan PA; Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
J Phys Chem B ; 113(47): 15581-8, 2009 Nov 26.
Article in En | MEDLINE | ID: mdl-19835361
ABSTRACT
For the past three decades, a full understanding of the electro-optic (EO) effect in amorphous organic media has remained elusive. Calculating a bulk material property from fundamental molecular properties, intermolecular electrostatic forces, and field-induced net acentric dipolar order has proven to be very challenging. Moreover, there has been a gap between ab initio quantum-mechanical (QM) predictions of molecular properties and their experimental verification at the level of bulk materials and devices. This report unifies QM-based estimates of molecular properties with the statistical mechanical interpretation of the order in solid phases of electric-field-poled, amorphous, organic dipolar chromophore-containing materials. By combining interdependent statistical and quantum mechanical methods, bulk material EO properties are predicted. Dipolar order in bulk, amorphous phases of EO materials can be understood in terms of simple coarse-grained force field models when the dielectric properties of the media are taken into account. Parameters used in the statistical mechanical modeling are not adjusted from the QM-based values, yet the agreement with the experimentally determined electro-optic coefficient is excellent.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Phys Chem B Journal subject: QUIMICA Year: 2009 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Phys Chem B Journal subject: QUIMICA Year: 2009 Document type: Article Affiliation country: United States