Irradiance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light-curing units.
J Esthet Restor Dent
; 22(6): 363-77, 2010 Dec.
Article
in En
| MEDLINE
| ID: mdl-21126292
PROBLEM: Previous studies identified nonuniformity in the irradiance at the tip end of a variety of dental light-curing units (LCUs) and correlated those differences with potential clinical implications, but the spectral dependence of the irradiance uniformity has not yet been addressed. PURPOSE: This study examined the irradiance uniformity across emitting tips of LCUs at two emission wavelengths, 405 and 460 nm. Two broadband emission light units (quartz-tungsten-halogen [QTH] and plasma arc [PAC]), and four commercial light-emitting diode (LED)-type LCUs were examined. MATERIALS AND METHODS: The spectral radiant power from six LCUs was measured using a laboratory grade spectroradiometer (Ocean Optics, Dunedin, FL, USA). The spatial and spectral characteristics of irradiance across the emitting tips of these light units were recorded through 10-nm wide bandpass filters (centered at 405 nm [violet] or 460 nm [blue]) using a laser beam analyzer (Ophir-Spiricon, Logan, UT, USA). Irradiance distributions were reported using two-dimensional contour and three-dimensional isometric color-coded images. Irradiance uniformity at the tip end was determined using the Top Hat Factor (THF) for each filtered wavelength. RESULTS: Irradiance distributions from the QTH and PAC units were uniformly distributed across the tip end of the light guide, and THF values, measured through the 405 and 460-nm filters, were not significantly different. However, the three polywave LED units delivered non-uniform irradiance distributions with THF values differing significantly between the 405 and 460-nm emission wavelengths for each unit. Areas of nonuniformity were attributed to the locations of the various types of LED chips within the LCUs. CONCLUSION: All three polywave LED units delivered a nonuniform irradiance distribution across their emitting tip ends at the two important emission wavelengths of 405 nm and 460 nm, whereas the broadband light sources (QTH and PAC) showed no evidence of spectral inhomogeneity at these wavelengths.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Curing Lights, Dental
Type of study:
Prognostic_studies
Limits:
Humans
Language:
En
Journal:
J Esthet Restor Dent
Journal subject:
ODONTOLOGIA
Year:
2010
Document type:
Article
Affiliation country:
Canada
Country of publication:
United kingdom