From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis.
Fungal Biol
; 115(3): 197-213, 2011 Mar.
Article
in En
| MEDLINE
| ID: mdl-21354526
The biodiversity-functional relationship in fungal ecology was recently developed and debated, but has rarely been addressed in endophytes. In this study, an integrative culture system was designed to capture a rich fungal consortium from the conifer Abies beshanzuensis. Results indicate an impressive diversity of fungal lineages (a total of 84 taxa classified in Dikarya) and a relatively high proportion of hitherto unknown species (27.4%). The laccase gene was used as a functional marker due to its involvement in lignocellulose degradation. Remarkable diversity of laccase genes was found across a wide range of taxa, with at least 35 and 19 distinct sequences in ascomycetes and basidiomycetes respectively, were revealed. Many groups displayed variable ability to decompose needles. Furthermore, many ascomycetes, including three volatile-producing Muscodor species (Xylariaceae), showed the ability to inhibit pathogens. Notably, most laccase-producing species showed little or no antibiosis and vice versa. Clavicipitalean and ustilaginomycetous fungi, specifically toxic to insects, were inferred from taxonomic information. Intra-specific physiological variation in Pezicula sporulosa, a second dominant species, was clearly high. We conclude that a suite of defensive characteristics in endophytes contributes to improving host fitness under various stresses and that a diversity of laccase genes confers an ecological advantage in competition for nutrients. Intra-specific diversity may be of great ecological significance for ecotypic adaptation. These findings suggest a fair degree of functional complementarity rather than redundancy among endemic symbionts of natural plant populations.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Symbiosis
/
Abies
/
Fungi
/
Antibiosis
Language:
En
Journal:
Fungal Biol
Journal subject:
MICROBIOLOGIA
Year:
2011
Document type:
Article
Affiliation country:
China
Country of publication:
Netherlands