Your browser doesn't support javascript.
loading
Physiological and molecular characterization of aristolochic acid transport by the kidney.
Dickman, Kathleen G; Sweet, Douglas H; Bonala, Radha; Ray, Tapan; Wu, Amy.
Affiliation
  • Dickman KG; Department of Pharmacological Sciences, Stony Brook University, BST-8, 152, Stony Brook, NY 11794, USA. dickman@pharm.stonybrook.edu
J Pharmacol Exp Ther ; 338(2): 588-97, 2011 Aug.
Article in En | MEDLINE | ID: mdl-21546538
ABSTRACT
Consumption of herbal medicines derived from Aristolochia plants is associated with a progressive tubulointerstitial disease known as aristolochic acid (AA) nephropathy. The nephrotoxin produced naturally by these plants is AA-I, a nitrophenanthrene carboxylic acid that selectively targets the proximal tubule. This nephron segment is prone to toxic injury because of its role in secretory elimination of drugs and other xenobiotics. Here, we characterize the handling of AA-I by membrane transporters involved in renal organic anion transport. Uptake assays in heterologous expression systems identified murine organic anion transporters (mOat1, mOat2, and mOat3) as capable of mediating transport of AA-I. Kinetic analyses showed that all three transporters have an affinity for AA-I in the submicromolar range and thus are likely to operate at toxicologically relevant concentrations in vivo. Structure-activity relationships revealed that the carboxyl group is critical for high-affinity interaction of AA-I with mOat1, mOat2, and mOat3, whereas the nitro group is required only by mOat1. Furthermore, the 8-methoxy group, although essential for toxicity, was not requisite for transport. Mouse renal cortical slices avidly accumulated AA-I, achieving slice-to-medium concentration ratios >10. Uptake by slices was sensitive to known mOat1 and mOat3 substrates and the organic anion transport inhibitor probenecid, which also blocked the production of DNA adducts formed with reactive intracellular metabolites of AA-I. Taken together, these findings indicate that OAT family members mediate high-affinity transport of AA-I and may be involved in the site-selective toxicity and renal elimination of this nephrotoxin.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Organic Anion Transporters / Aristolochic Acids / Kidney Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2011 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Organic Anion Transporters / Aristolochic Acids / Kidney Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2011 Document type: Article Affiliation country: United States