Your browser doesn't support javascript.
loading
Resummed thermodynamic perturbation theory for central force associating potential. Multi-patch models.
Kalyuzhnyi, Y V; Docherty, H; Cummings, P T.
Affiliation
  • Kalyuzhnyi YV; Institute for Condensed Matter Physics, Svientsitskoho 1, 79011 Lviv, Ukraine. yukal@icmp.lviv.ua
J Chem Phys ; 135(1): 014501, 2011 Jul 07.
Article in En | MEDLINE | ID: mdl-21744904
ABSTRACT
A resummed thermodynamic perturbation theory for associating fluids with multiply bondable central force associating potential is extended for the fluid with multiple number of multiply bondable associating sites. We consider a multi-patch hard-sphere model for associating fluids. The model is represented by the hard-sphere fluid system with several spherical attractive patches on the surface of each hard sphere. Resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. Closed form analytical expressions for thermodynamical properties (Helmholtz free energy, pressure, internal energy, and chemical potential) of the models with arbitrary number of doubly bondable patches at all degrees of the blockage are presented. In the limiting case of total blockage, when the patches become only singly bondable, our theory reduces to Wertheim's thermodynamic perturbation theory (TPT) for polymerizing fluids. To validate the accuracy of the theory we compare to exact values, for the thermodynamical properties of the system, as determined by Monte Carlo computer simulations. In addition we compare the fraction of multiply bonded particles at different values of the density and temperature. In general, predictions of the present theory are in good agreement with values for the model calculated using Monte Carlo simulations, i.e., the accuracy of our theory in the case of the models with multiply bondable sites is similar to that of Wertheim's TPT in the case of the models with singly bondable sites.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: J Chem Phys Year: 2011 Document type: Article Affiliation country: Ukraine

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: J Chem Phys Year: 2011 Document type: Article Affiliation country: Ukraine