Your browser doesn't support javascript.
loading
Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.
Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A.
Affiliation
  • Takeda K; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
Sci Signal ; 5(205): ra2, 2012 Jan 03.
Article in En | MEDLINE | ID: mdl-22215733
ABSTRACT
Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Adaptation, Physiological / Chemotaxis / Ras Proteins / Feedback, Physiological / Receptors, G-Protein-Coupled / Dictyostelium / Models, Biological Type of study: Prognostic_studies Language: En Journal: Sci Signal Journal subject: CIENCIA / FISIOLOGIA Year: 2012 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Adaptation, Physiological / Chemotaxis / Ras Proteins / Feedback, Physiological / Receptors, G-Protein-Coupled / Dictyostelium / Models, Biological Type of study: Prognostic_studies Language: En Journal: Sci Signal Journal subject: CIENCIA / FISIOLOGIA Year: 2012 Document type: Article Affiliation country: United States