Your browser doesn't support javascript.
loading
Conduit diameter and wall remodeling in elite athletes and spinal cord injury.
Rowley, Nicola Jayne; Dawson, Ellen Adele; Hopman, Maria T E; George, Keith P; Whyte, Greg P; Thijssen, Dick H J; Green, Daniel John.
Affiliation
  • Rowley NJ; Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom.
Med Sci Sports Exerc ; 44(5): 844-9, 2012 May.
Article in En | MEDLINE | ID: mdl-22508165
ABSTRACT

PURPOSE:

This study aimed to investigate localized and systemic effects of chronic exercise and inactivity on conduit artery remodeling in humans.

METHODS:

We recruited elite athletes engaged in predominantly lower limb (LL runners/cyclists, n = 10) or upper limb (UL canoe paddlers, n = 12) exercise and matched able-bodied, recreationally active, controls (C, n = 16). We also studied wheelchair controls (spinal cord injury, n = 9) and athletes (spinal cord injury, n = 1; spina bifida, n = 4). Carotid, brachial, and superficial femoral (SF) artery diameter and wall thickness were assessed using high-resolution ultrasound.

RESULTS:

Brachial diameters were significantly larger in UL and wheelchair users (athletes and controls) compared with C (both P < 0.05). SF artery diameter in wheelchair controls was significantly smaller compared with the other groups, with LL athletes having significantly greater lumen diameter than controls (both P < 0.05). In all arteries, a lower wall thickness was found in able-bodied athletes compared with C, including wheelchair athletes compared with wheelchair controls (P < 0.001). In the SF artery, wall-to-lumen-ratio was significantly lower in able-bodied athletes and higher in wheelchair controls compared with able-bodied controls (P < 0.001). In the brachial and carotid arteries, able-bodied and wheelchair athletes demonstrated lower wall-to-lumen-ratio than less active wheelchair controls and able-bodied controls (P < 0.001).

CONCLUSIONS:

These findings suggest that remodeling of the arterial wall occurs systemically in response to exercise training and is unrelated to exercise type in humans. Conversely, localized effects are evident with respect to the effect of exercise on arterial diameter. These findings have implications for our understanding of the effects of exercise on arterial structure and function in humans.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Spinal Cord Injuries / Brachial Artery / Adaptation, Physiological / Carotid Arteries / Physical Exertion / Femoral Artery / Athletes Type of study: Diagnostic_studies / Observational_studies Limits: Adult / Female / Humans / Male Language: En Journal: Med Sci Sports Exerc Year: 2012 Document type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Spinal Cord Injuries / Brachial Artery / Adaptation, Physiological / Carotid Arteries / Physical Exertion / Femoral Artery / Athletes Type of study: Diagnostic_studies / Observational_studies Limits: Adult / Female / Humans / Male Language: En Journal: Med Sci Sports Exerc Year: 2012 Document type: Article Affiliation country: United kingdom