Your browser doesn't support javascript.
loading
Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys.
Carey, Stephan A; Plopper, Charles G; Hyde, Dallas M; Islam, Zahidul; Pestka, James J; Harkema, Jack R.
Affiliation
  • Carey SA; Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA. careys@msu.edu
Toxicol Pathol ; 40(6): 887-98, 2012 Aug.
Article in En | MEDLINE | ID: mdl-22552393
ABSTRACT
Satratoxin-G (SG) is a trichothecene mycotoxin of Stachybotrys chartarum, the black mold suggested to contribute etiologically to illnesses associated with water-damaged buildings. We have reported that intranasal exposure to SG evokes apoptosis of olfactory sensory neurons (OSNs) and acute inflammation in the nose and brain of laboratory mice. To further assess the potential human risk of nasal airway injury and neurotoxicity, we developed a model of SG exposure in monkeys, whose nasal airways more closely resemble those of humans. Adult, male rhesus macaques received a single intranasal instillation of 20 µg SG (high dose, n = 3), or 5 µg SG daily for four days (repeated low dose, n = 3) in one nasal passage, and saline vehicle in the contralateral nasal passage. Nasal tissues were examined using light and electron microscopy and morphometric analysis. SG induced acute rhinitis, atrophy of the olfactory epithelium (OE), and apoptosis of OSNs in both groups. High-dose and repeated low-dose SG elicited a 13% and 66% reduction in OSN volume density, and a 14-fold and 24-fold increase in apoptotic cells of the OE, respectively. This model provides new insight into the potential risk of nasal airway injury and neurotoxicity caused by exposure to water-damaged buildings.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stachybotrys / Trichothecenes / Rhinitis / Apoptosis / Olfactory Receptor Neurons / Nasal Cavity Limits: Animals Language: En Journal: Toxicol Pathol Year: 2012 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stachybotrys / Trichothecenes / Rhinitis / Apoptosis / Olfactory Receptor Neurons / Nasal Cavity Limits: Animals Language: En Journal: Toxicol Pathol Year: 2012 Document type: Article Affiliation country: United States