Your browser doesn't support javascript.
loading
Using a priori knowledge to align sequencing reads to their exact genomic position.
Böttcher, René; Amberg, Ronny; Ruzius, F P; Guryev, V; Verhaegh, Wim F J; Beyerlein, Peter; van der Zaag, P J.
Affiliation
  • Böttcher R; Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands.
Nucleic Acids Res ; 40(16): e125, 2012 Sep.
Article in En | MEDLINE | ID: mdl-22581774
The use of a priori knowledge in the alignment of targeted sequencing data is investigated using computational experiments. Adapting a Needleman-Wunsch algorithm to incorporate the genomic position information from the targeted capture, we demonstrate that alignment can be done to just the target region of interest. When in addition use is made of direct string comparison, an improvement of up to a factor of 8 in alignment speed compared to the fastest conventional aligner (Bowtie) is obtained. This results in a total alignment time in targeted sequencing of around 7 min for aligning approximately 56 million captured reads. For conventional aligners such as Bowtie, BWA or MAQ, alignment to just the target region is not feasible as experiments show that this leads to an additional 88% SNP calls, the vast majority of which are false positives (≈ 92%).
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Sequence Alignment / Sequence Analysis, DNA / Genomics Language: En Journal: Nucleic Acids Res Year: 2012 Document type: Article Affiliation country: Netherlands Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Sequence Alignment / Sequence Analysis, DNA / Genomics Language: En Journal: Nucleic Acids Res Year: 2012 Document type: Article Affiliation country: Netherlands Country of publication: United kingdom