Lysine 394 is a novel Rad6B-induced ubiquitination site on beta-catenin.
Biochim Biophys Acta
; 1823(10): 1686-96, 2012 Oct.
Article
in En
| MEDLINE
| ID: mdl-22705350
The ubiquitin conjugating enzyme Rad6B is overexpressed in breast cancer and induces ß-catenin transcriptional activation and stabilization via K63-linked polyubiquitination. Here we identify ß-catenin and Rad6B interacting regions, identify potential Rad6B ubiquitination sites in ß-catenin, and characterize their breast cancer tissue expression. ß-catenin and Rad6B colocalize in breast carcinoma and coimmunoprecipitate from MDA-MB-231 cells. Pull-down assays using GST-ß-catenin and His-Rad6B deletion mutants identified amino acids 131-181 and 50-116, respectively, as necessary for their interaction. Ubiquitination assays using ß-catenin deletion mutants mapped Rad6B-induced ubiquitination within ß-catenin 181-422 encompassing Armadillo repeats 2-7. Lysine to arginine mutations within repeats 5-7 identified K394 as the major Rad6B ubiquitination site in vitro and in vivo, and confirmed by Rad6B ubiquitination of a ß-catenin peptide encompassing K394. Ubiquitination of wild type- but not K394R-ß-catenin was decreased by Rad6B silencing. Compared to wild type-, K312R-, K335R-, K345R-, or K354R-ß-catenin, K394R mutation caused ~50% drop in TOP/Flash activity in Wnt-silent MCF-7 cells. Consistent with these data, expression of Rad6B, itself a ß-catenin/TCF transcriptional target, was also reduced in K394R-ß-catenin transfected cells. Steady-state K394R-ß-catenin levels are decreased compared to wild type-ß-catenin. The decreased expression is not due to proteasomal degradation as treatment with MG132 failed to rescue its levels. Lymph node-positive breast carcinomas express higher levels of Rad6 protein and Rad6 activity, and K63-linked ubiquitinated ß-catenin than reduction mammoplasties. These data suggest that K394 is a novel site of ß-catenin ubiquitination that may be important for the stability and activity of ß-catenin in breast cancer.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Ubiquitin-Conjugating Enzymes
/
Beta Catenin
/
Ubiquitination
/
Lysine
Type of study:
Prognostic_studies
Limits:
Female
/
Humans
Language:
En
Journal:
Biochim Biophys Acta
Year:
2012
Document type:
Article
Affiliation country:
United States
Country of publication:
Netherlands