Your browser doesn't support javascript.
loading
A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane.
Burgers, Pepijn P; Ma, Yuliang; Margarucci, Luigi; Mackey, Mason; van der Heyden, Marcel A G; Ellisman, Mark; Scholten, Arjen; Taylor, Susan S; Heck, Albert J R.
Affiliation
  • Burgers PP; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
J Biol Chem ; 287(52): 43789-97, 2012 Dec 21.
Article in En | MEDLINE | ID: mdl-23115245
ABSTRACT
Protein kinase A-anchoring proteins (AKAPs) provide spatio-temporal specificity for the omnipotent cAMP-dependent protein kinase (PKA) via high affinity interactions with PKA regulatory subunits (PKA-RI, RII). Many PKA-RII-AKAP complexes are heavily tethered to cellular substructures, whereas PKA-RI-AKAP complexes have remained largely undiscovered. Here, using a cAMP affinity-based chemical proteomics strategy in human heart and platelets, we uncovered a novel, ubiquitously expressed AKAP, termed small membrane (sm)AKAP due to its specific localization at the plasma membrane via potential myristoylation/palmitoylation anchors. In vitro binding studies revealed specificity of smAKAP for PKA-RI (K(d) = 7 nM) over PKA-RII (K(d) = 53 nM) subunits, co-expression of smAKAP with the four PKA R subunits revealed an even more exclusive specificity of smAKAP for PKA-RIα/ß in the cellular context. Applying the singlet oxygen-generating electron microscopy probe miniSOG indicated that smAKAP is tethered to the plasma membrane and is particularly dense at cell-cell junctions and within filopodia. Our preliminary functional characterization of smAKAP provides evidence that, like PKA-RII, PKA-RI can be tightly tethered by a novel repertoire of AKAPs, providing a new perspective on spatio-temporal control of cAMP signaling.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Second Messenger Systems / Cell Membrane / Cyclic AMP / Cyclic AMP-Dependent Protein Kinase Type I / A Kinase Anchor Proteins / Lipoylation Limits: Animals / Female / Humans / Male Language: En Journal: J Biol Chem Year: 2012 Document type: Article Affiliation country: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Second Messenger Systems / Cell Membrane / Cyclic AMP / Cyclic AMP-Dependent Protein Kinase Type I / A Kinase Anchor Proteins / Lipoylation Limits: Animals / Female / Humans / Male Language: En Journal: J Biol Chem Year: 2012 Document type: Article Affiliation country: Netherlands